Abstract:High-quality human-annotated data is crucial for modern deep learning pipelines, yet the human annotation process is both costly and time-consuming. Given a constrained human labeling budget, selecting an informative and representative data subset for labeling can significantly reduce human annotation effort. Well-performing state-of-the-art (SOTA) coreset selection methods require ground-truth labels over the whole dataset, failing to reduce the human labeling burden. Meanwhile, SOTA label-free coreset selection methods deliver inferior performance due to poor geometry-based scores. In this paper, we introduce ELFS, a novel label-free coreset selection method. ELFS employs deep clustering to estimate data difficulty scores without ground-truth labels. Furthermore, ELFS uses a simple but effective double-end pruning method to mitigate bias on calculated scores, which further improves the performance on selected coresets. We evaluate ELFS on five vision benchmarks and show that ELFS consistently outperforms SOTA label-free baselines. For instance, at a 90% pruning rate, ELFS surpasses the best-performing baseline by 5.3% on CIFAR10 and 7.1% on CIFAR100. Moreover, ELFS even achieves comparable performance to supervised coreset selection at low pruning rates (e.g., 30% and 50%) on CIFAR10 and ImageNet-1K.
Abstract:Large language models (LLMs) have seen significant adoption for natural language tasks, owing their success to massive numbers of model parameters (e.g., 70B+); however, LLM inference incurs significant computation and memory costs. Recent approaches propose parallel decoding strategies, such as Skeleton-of-Thought (SoT), to improve performance by breaking prompts down into sub-problems that can be decoded in parallel; however, they often suffer from reduced response quality. Our key insight is that we can request additional information, specifically dependencies and difficulty, when generating the sub-problems to improve both response quality and performance. In this paper, we propose Skeleton Graph Decoding (SGD), which uses dependencies exposed between sub-problems to support information forwarding between dependent sub-problems for improved quality while exposing parallelization opportunities for decoding independent sub-problems. Additionally, we leverage difficulty estimates for each sub-problem to select an appropriately-sized model, improving performance without significantly reducing quality. Compared to standard autoregressive generation and SoT, SGD achieves a 1.69x speedup while improving quality by up to 51%.
Abstract:Large Language Models (LLMs) have achieved remarkable success with their billion-level parameters, yet they incur high inference overheads. The emergence of activation sparsity in LLMs provides a natural approach to reduce this cost by involving only parts of the parameters for inference. Existing methods only focus on utilizing this naturally formed activation sparsity, overlooking the potential for further amplifying this inherent sparsity. In this paper, we hypothesize that LLMs can learn to be efficient by achieving more structured activation sparsity. To achieve this, we introduce a novel algorithm, Learn-To-be-Efficient (LTE), designed to train efficiency-aware LLMs to learn to activate fewer neurons and achieve a better trade-off between sparsity and performance. Furthermore, unlike SOTA MoEfication methods, which mainly focus on ReLU-based models, LTE can also be applied to LLMs like GPT and LLaMA with soft activation functions. We evaluate LTE on four models and eleven datasets. The experiments show that LTE achieves a better trade-off between sparsity and task performance. For instance, LTE with LLaMA provides a 1.83x-2.59x FLOPs speed-up on language generation tasks, outperforming the state-of-the-art methods.
Abstract:Given a real-world dataset, data condensation (DC) aims to synthesize a significantly smaller dataset that captures the knowledge of this dataset for model training with high performance. Recent works propose to enhance DC with data parameterization, which condenses data into parameterized data containers rather than pixel space. The intuition behind data parameterization is to encode shared features of images to avoid additional storage costs. In this paper, we recognize that images share common features in a hierarchical way due to the inherent hierarchical structure of the classification system, which is overlooked by current data parameterization methods. To better align DC with this hierarchical nature and encourage more efficient information sharing inside data containers, we propose a novel data parameterization architecture, Hierarchical Memory Network (HMN). HMN stores condensed data in a three-tier structure, representing the dataset-level, class-level, and instance-level features. Another helpful property of the hierarchical architecture is that HMN naturally ensures good independence among images despite achieving information sharing. This enables instance-level pruning for HMN to reduce redundant information, thereby further minimizing redundancy and enhancing performance. We evaluate HMN on four public datasets (SVHN, CIFAR10, CIFAR100, and Tiny-ImageNet) and compare HMN with eight DC baselines. The evaluation results show that our proposed method outperforms all baselines, even when trained with a batch-based loss consuming less GPU memory.
Abstract:Perception is crucial in the realm of autonomous driving systems, where bird's eye view (BEV)-based architectures have recently reached state-of-the-art performance. The desirability of self-supervised representation learning stems from the expensive and laborious process of annotating 2D and 3D data. Although previous research has investigated pretraining methods for both LiDAR and camera-based 3D object detection, a unified pretraining framework for multimodal BEV perception is missing. In this study, we introduce CALICO, a novel framework that applies contrastive objectives to both LiDAR and camera backbones. Specifically, CALICO incorporates two stages: point-region contrast (PRC) and region-aware distillation (RAD). PRC better balances the region- and scene-level representation learning on the LiDAR modality and offers significant performance improvement compared to existing methods. RAD effectively achieves contrastive distillation on our self-trained teacher model. CALICO's efficacy is substantiated by extensive evaluations on 3D object detection and BEV map segmentation tasks, where it delivers significant performance improvements. Notably, CALICO outperforms the baseline method by 10.5% and 8.6% on NDS and mAP. Moreover, CALICO boosts the robustness of multimodal 3D object detection against adversarial attacks and corruption. Additionally, our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.
Abstract:One-shot coreset selection aims to select a subset of the training data, given a pruning rate, that can achieve high accuracy for models that are subsequently trained only with that subset. State-of-the-art coreset selection methods typically assign an importance score to each example and select the most important examples to form a coreset. These methods perform well at low pruning rates; but at high pruning rates, they have been found to suffer a catastrophic accuracy drop, performing worse than even random coreset selection. In this paper, we explore the reasons for this accuracy drop both theoretically and empirically. We extend previous theoretical results on the bound for model loss in terms of coverage provided by the coreset. Inspired by theoretical results, we propose a novel coverage-based metric and, based on the metric, find that coresets selected by importance-based coreset methods at high pruning rates can be expected to perform poorly compared to random coresets because of worse data coverage. We then propose a new coreset selection method, Coverage-centric Coreset Selection (CCS), where we jointly consider overall data coverage based on the proposed metric as well as importance of each example. We evaluate CCS on four datasets and show that they achieve significantly better accuracy than state-of-the-art coreset selection methods as well as random sampling under high pruning rates, and comparable performance at low pruning rates. For example, CCS achieves 7.04% better accuracy than random sampling and at least 20.16% better than popular importance-based selection methods on CIFAR10 with a 90% pruning rate.
Abstract:Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks. Currently, there is no clear insight into how slight perturbations cause such a large difference in classification results and how we can design a more robust model architecture. In this work, we propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables. Interpreting the classification process of adversarial examples exposes how adversarial perturbations influence features layer by layer as well as which features are modified by perturbations. Moreover, we design the first diagnostic method to quantify the vulnerability contributed by each layer, which can be used to identify vulnerable parts of model architectures. The diagnostic results show that the layers introducing more information loss tend to be more vulnerable than other layers. Based on the findings, our evaluation results on MNIST and CIFAR10 datasets suggest that average pooling layers, with lower information loss, are more robust than max pooling layers for the network architectures studied in this paper.
Abstract:Adversarial training is an effective defense method to protect classification models against adversarial attacks. However, one limitation of this approach is that it can require orders of magnitude additional training time due to high cost of generating strong adversarial examples during training. In this paper, we first show that there is high transferability between models from neighboring epochs in the same training process, i.e., adversarial examples from one epoch continue to be adversarial in subsequent epochs. Leveraging this property, we propose a novel method, Adversarial Training with Transferable Adversarial Examples (ATTA), that can enhance the robustness of trained models and greatly improve the training efficiency by accumulating adversarial perturbations through epochs. Compared to state-of-the-art adversarial training methods, ATTA enhances adversarial accuracy by up to 7.2% on CIFAR10 and requires 12~14x less training time on MNIST and CIFAR10 datasets with comparable model robustness.
Abstract:Existing deep neural networks, say for image classification, have been shown to be vulnerable to adversarial images that can cause a DNN misclassification, without any perceptible change to an image. In this work, we propose shock absorbing robust features such as binarization, e.g., rounding, and group extraction, e.g., color or shape, to augment the classification pipeline, resulting in more robust classifiers. Experimentally, we show that augmenting ML models with these techniques leads to improved overall robustness on adversarial inputs as well as significant improvements in training time. On the MNIST dataset, we achieved 14x speedup in training time to obtain 90% adversarial accuracy com-pared to the state-of-the-art adversarial training method of Madry et al., as well as retained higher adversarial accuracy over a broader range of attacks. We also find robustness improvements on traffic sign classification using robust feature augmentation. Finally, we give theoretical insights for why one can expect robust feature augmentation to reduce adversarial input space
Abstract:Recently, interpretable models called self-explaining models (SEMs) have been proposed with the goal of providing interpretability robustness. We evaluate the interpretability robustness of SEMs and show that explanations provided by SEMs as currently proposed are not robust to adversarial inputs. Specifically, we successfully created adversarial inputs that do not change the model outputs but cause significant changes in the explanations. We find that even though current SEMs use stable co-efficients for mapping explanations to output labels, they do not consider the robustness of the first stage of the model that creates interpretable basis concepts from the input, leading to non-robust explanations. Our work makes a case for future work to start examining how to generate interpretable basis concepts in a robust way.