Abstract:With the development of artificial intelligence and unmanned equipment, human-machine hybrid formations will be the main focus in future combat formations. With the development of big data and various situational awareness technologies, while enhancing the breadth and depth of information, decision-making has also become more complex. The operation mode of existing unmanned equipment often requires complex manual input, which is not conducive to the battlefield environment. How to reduce the cognitive load of information exchange between soldiers and various unmanned equipment is an important issue in future intelligent warfare. This paper proposes a brain computer interface communication system for soldier combat, which takes into account the characteristics of soldier combat scenarios in design. The stimulation paradigm is combined with helmets, portable computers, and firearms, and brain computer interface technology is used to achieve fast, barrier free, and hands-free communication between humans and machines. Intelligent algorithms are combined to assist decision-making in fully perceiving and fusing situational information on the battlefield, and a large amount of data is processed quickly, understanding and integrating a large amount of data from human and machine networks, achieving real-time perception of battlefield information, making intelligent decisions, and achieving the effect of direct control of drone swarms and other equipment by the human brain to assist in soldier scenarios.
Abstract:Taxonomy is formulated as directed acyclic concepts graphs or trees that support many downstream tasks. Many new coming concepts need to be added to an existing taxonomy. The traditional taxonomy expansion task aims only at finding the best position for new coming concepts in the existing taxonomy. However, they have two drawbacks when being applied to the real-scenarios. The previous methods suffer from low-efficiency since they waste much time when most of the new coming concepts are indeed noisy concepts. They also suffer from low-effectiveness since they collect training samples only from the existing taxonomy, which limits the ability of the model to mine more hypernym-hyponym relationships among real concepts. This paper proposes a pluggable framework called Generative Adversarial Network for Taxonomy Entering Evaluation (GANTEE) to alleviate these drawbacks. A generative adversarial network is designed in this framework by discriminative models to alleviate the first drawback and the generative model to alleviate the second drawback. Two discriminators are used in GANTEE to provide long-term and short-term rewards, respectively. Moreover, to further improve the efficiency, pre-trained language models are used to retrieve the representation of the concepts quickly. The experiments on three real-world large-scale datasets with two different languages show that GANTEE improves the performance of the existing taxonomy expansion methods in both effectiveness and efficiency.