Abstract:Long Chain-of-Thought (LCoT), achieved by Reinforcement Learning with Verifiable Rewards (RLVR), has proven effective in enhancing the reasoning capabilities of Large Language Models (LLMs). However, reasoning in current LLMs is primarily generated as plain text, where performing semantic evaluation on such unstructured data creates a computational bottleneck during training. Despite RLVR-based optimization, existing methods still suffer from coarse-grained supervision, reward hacking, high training costs, and poor generalization. To address these issues, we propose the Graph Reasoning Paradigm (GRP), which realizes structured and symbolic reasoning, implemented via graph-structured representations with step-level cognitive labels. Building upon GRP, we further design Process-Aware Stratified Clipping Group Relative Policy Optimization (PASC-GRPO), which leverages structured evaluation to replace semantic evaluation, achieves process-aware verification through graph-structured outcome rewards, and mitigates reward hacking via stratified clipping advantage estimation. Experiments demonstrate significant improvements across mathematical reasoning and code generation tasks. Data, models, and code will be released later.
Abstract:With the development of artificial intelligence and unmanned equipment, human-machine hybrid formations will be the main focus in future combat formations. With the development of big data and various situational awareness technologies, while enhancing the breadth and depth of information, decision-making has also become more complex. The operation mode of existing unmanned equipment often requires complex manual input, which is not conducive to the battlefield environment. How to reduce the cognitive load of information exchange between soldiers and various unmanned equipment is an important issue in future intelligent warfare. This paper proposes a brain computer interface communication system for soldier combat, which takes into account the characteristics of soldier combat scenarios in design. The stimulation paradigm is combined with helmets, portable computers, and firearms, and brain computer interface technology is used to achieve fast, barrier free, and hands-free communication between humans and machines. Intelligent algorithms are combined to assist decision-making in fully perceiving and fusing situational information on the battlefield, and a large amount of data is processed quickly, understanding and integrating a large amount of data from human and machine networks, achieving real-time perception of battlefield information, making intelligent decisions, and achieving the effect of direct control of drone swarms and other equipment by the human brain to assist in soldier scenarios.