Abstract:The application of unmanned aerial vehicles (UAV) has been widely extended recently. It is crucial to ensure accurate latitude and longitude coordinates for UAVs, especially when the global navigation satellite systems (GNSS) are disrupted and unreliable. Existing visual localization methods achieve autonomous visual localization without error accumulation by matching the ground-down view image of UAV with the ortho satellite maps. However, collecting UAV ground-down view images across diverse locations is costly, leading to a scarcity of large-scale datasets for real-world scenarios. Existing datasets for UAV visual localization are often limited to small geographic areas or are focused only on urban regions with distinct textures. To address this, we define the UAV visual localization task by determining the UAV's real position coordinates on a large-scale satellite map based on the captured ground-down view. In this paper, we present a large-scale dataset, UAV-VisLoc, to facilitate the UAV visual localization task. This dataset comprises images from diverse drones across 11 locations in China, capturing a range of topographical features. The dataset features images from fixed-wing drones and multi-terrain drones, captured at different altitudes and orientations. Our dataset includes 6,742 drone images and 11 satellite maps, with metadata such as latitude, longitude, altitude, and capture date. Our dataset is tailored to support both the training and testing of models by providing a diverse and extensive data.
Abstract:With the development of artificial intelligence and unmanned equipment, human-machine hybrid formations will be the main focus in future combat formations. With the development of big data and various situational awareness technologies, while enhancing the breadth and depth of information, decision-making has also become more complex. The operation mode of existing unmanned equipment often requires complex manual input, which is not conducive to the battlefield environment. How to reduce the cognitive load of information exchange between soldiers and various unmanned equipment is an important issue in future intelligent warfare. This paper proposes a brain computer interface communication system for soldier combat, which takes into account the characteristics of soldier combat scenarios in design. The stimulation paradigm is combined with helmets, portable computers, and firearms, and brain computer interface technology is used to achieve fast, barrier free, and hands-free communication between humans and machines. Intelligent algorithms are combined to assist decision-making in fully perceiving and fusing situational information on the battlefield, and a large amount of data is processed quickly, understanding and integrating a large amount of data from human and machine networks, achieving real-time perception of battlefield information, making intelligent decisions, and achieving the effect of direct control of drone swarms and other equipment by the human brain to assist in soldier scenarios.
Abstract:Advances in space exploration have led to an explosion of tasks. Conventionally, these tasks are offloaded to ground servers for enhanced computing capability, or to adjacent low-earth-orbit satellites for reduced transmission delay. However, the overall delay is determined by both computation and transmission costs. The existing offloading schemes, while being highly-optimized for either costs, can be abysmal for the overall performance. The computation-transmission cost dilemma is yet to be solved. In this paper, we propose an adaptive offloading scheme to reduce the overall delay. The core idea is to jointly model and optimize the transmission-computation process over the entire network. Specifically, to represent the computation state migrations, we generalize graph nodes with multiple states. In this way, the joint optimization problem is transformed into a shortest path problem over the state graph. We further provide an extended Dijkstra's algorithm for efficient path finding. Simulation results show that the proposed scheme outperforms the ground and one-hop offloading schemes by up to 37.56% and 39.35% respectively on SpaceCube v2.0.