Abstract:While Large language models (LLMs) have become excellent writing assistants, they still struggle with quotation generation. This is because they either hallucinate when providing factual quotations or fail to provide quotes that exceed human expectations. To bridge the gap, we systematically study how to evaluate and improve LLMs' performance in quotation generation tasks. We first establish a holistic and automatic evaluation system for quotation generation task, which consists of five criteria each with corresponding automatic metric. To improve the LLMs' quotation generation abilities, we construct a bilingual knowledge base that is broad in scope and rich in dimensions, containing up to 32,022 quotes. Moreover, guided by our critiria, we further design a quotation-specific metric to rerank the retrieved quotations from the knowledge base. Extensive experiments show that our metrics strongly correlate with human preferences. Existing LLMs struggle to generate desired quotes, but our quotation knowledge base and reranking metric help narrow this gap. Our dataset and code are publicly available at https://github.com/GraceXiaoo/QUILL.
Abstract:Efficient computation of graph diffusion equations (GDEs), such as Personalized PageRank, Katz centrality, and the Heat kernel, is crucial for clustering, training neural networks, and many other graph-related problems. Standard iterative methods require accessing the whole graph per iteration, making them time-consuming for large-scale graphs. While existing local solvers approximate diffusion vectors through heuristic local updates, they often operate sequentially and are typically designed for specific diffusion types, limiting their applicability. Given that diffusion vectors are highly localizable, as measured by the participation ratio, this paper introduces a novel framework for approximately solving GDEs using a local diffusion process. This framework reveals the suboptimality of existing local solvers. Furthermore, our approach effectively localizes standard iterative solvers by designing simple and provably sublinear time algorithms. These new local solvers are highly parallelizable, making them well-suited for implementation on GPUs. We demonstrate the effectiveness of our framework in quickly obtaining approximate diffusion vectors, achieving up to a hundred-fold speed improvement, and its applicability to large-scale dynamic graphs. Our framework could also facilitate more efficient local message-passing mechanisms for GNNs.
Abstract:Autonomous agents operating on the graphical user interfaces (GUIs) of various applications hold immense practical value. Unlike the large language model (LLM)-based methods which rely on structured texts and customized backends, the approaches using large vision-language models (LVLMs) are more intuitive and adaptable as they can visually perceive and directly interact with screens, making them indispensable in general scenarios without text metadata and tailored backends. Given the lack of high-quality training data for GUI-related tasks in existing work, this paper aims to enhance the GUI understanding and interacting capabilities of LVLMs through a data-driven approach. We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web. Evaluation results on various GUI and agent benchmarks demonstrate that the model trained with the dataset generated through EDGE exhibits superior webpage understanding capabilities, which can then be easily transferred to previously unseen desktop and mobile environments. Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work. Our source code, the dataset and the model are available at https://anonymous.4open.science/r/EDGE-1CDB.
Abstract:Given the damping factor $\alpha$ and precision tolerance $\epsilon$, \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by $\Theta(1/(\alpha\epsilon))$ independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using $\tilde{O}(1/(\sqrt{\alpha}\epsilon))$ operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let $\overline{\operatorname{vol}}{ (S_t)}$ and $\overline{\gamma}_{t}$ be the running average of volume and the residual ratio of active nodes $\textstyle S_{t}$ during the process. We show $\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon$ and prove APPR admits a new runtime bound $\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))$ mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is $\Theta(\sqrt{\alpha})$, then there exists $c \in (0,2)$ such that the local Chebyshev method has runtime $\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))$ without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.
Abstract:While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
Abstract:The relation extraction (RE) in complex scenarios faces challenges such as diverse relation types and ambiguous relations between entities within a single sentence, leading to the poor performance of pure "text-in, text-out" language models (LMs). To address these challenges, in this paper, we propose an agent-based RE framework, namely AgentRE, which fully leverages the potential of large language models (LLMs) including memory, retrieval and reflection, to achieve RE in complex scenarios. Specifically, three major modules are built in AgentRE serving as the tools to help the agent acquire and process various useful information, thereby obtaining improved RE performance. Our extensive experimental results upon two datasets in English and Chinese demonstrate our AgentRE's superior performance, especially in low-resource scenarios. Additionally, the trajectories generated by AgentRE can be refined to construct a high-quality training dataset incorporating different reasoning methods, which can be used to fine-tune smaller models. Code is available at https://github.com/Lightblues/AgentRE.
Abstract:Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia.While existing RPAs well portray the characters' knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations. Code and data are available at \href{https://github.com/alienet1109/RolePersonality}{this URL}.
Abstract:The rise of powerful large language models (LLMs) has spurred a new trend in building LLM-based autonomous agents for solving complex tasks, especially multi-agent systems. Despite the remarkable progress, we notice that existing works are heavily dependent on human-designed frameworks, which greatly limits the functional scope and scalability of agent systems. How to automatically extend the specialized agent to multi-agent systems to improve task-solving capability still remains a significant challenge. In this paper, we introduce EvoAgent, a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm, thereby improving the effectiveness of LLM-based agents in solving tasks. Specifically, we consider the existing agent frameworks as the initial individual and then apply a series of evolutionary operators (e.g., mutation, crossover, selection, etc.) to generate multiple agents with diverse agent settings. EvoAgent can be generalized to any LLM-based agent framework, and can automatically extend the existing agent framework to multi-agent systems without any extra human designs. Experimental results across various tasks have shown that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
Abstract:Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning. However, their extraction behavior on complex sentences and tasks is unstable, emerging issues such as false positives and missing elements. We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance, and the extraction orders of entities significantly affect the final results of LLMs. This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning. We regard sequential extraction as a Markov decision process, build an LLM-based extraction environment, design a decision module to adaptively provide the optimal order for sequential entity extraction on different sentences, and utilize the DDQN algorithm to train the decision model. We also design the rewards and evaluation metrics suitable for the extraction results of LLMs. We conduct extensive experiments on multiple public datasets to demonstrate the effectiveness of our method in improving the information extraction capabilities of LLMs.
Abstract:Analogical reasoning plays a critical role in human cognition, enabling us to understand new concepts by associating them with familiar ones. Previous research in the AI community has mainly focused on identifying and generating analogies and then examining their quality under human evaluation, which overlooks the practical application of these analogies in real-world settings. Inspired by the human education process, in this paper, we propose to investigate how analogies created by teacher language models (LMs) can assist student LMs in understanding scientific concepts, thereby aligning more closely with practical scenarios. Our results suggest that free-form analogies can indeed aid LMs in understanding concepts. Additionally, analogies generated by student LMs can improve their own performance on scientific question answering, demonstrating their capability to use analogies for self-learning new knowledge. Resources are available at https://github.com/siyuyuan/SCUA.