Abstract:Magneto-oscillatory devices have been recently developed as very potent wireless miniature position trackers and sensors with an exceptional accuracy and sensing distance for surgical and robotic applications. However, it is still unclear to which extend a mechanically resonating sub-millimeter magnet interacts with external magnetic fields or gradients, which induce frequency shifts of sub-mHz to several Hz and therefore affect the sensing accuracy. Here, we investigate this effect experimentally on a cantilever-based magneto-oscillatory wireless sensor (MOWS) and build an analytical model concerning magnetic and mechanical interactions. The millimeter-scale MOWS is capable to detect magnetic fields with sub-uT resolution to at least +/- 5 mT, and simultaneously detects magnetic field gradients with a resolution of 65 uT/m to at least +/- 50 mT/m. The magnetic field sensitivity allows direct calculation of mechanical device properties, and by rotation, individual contributions of the magnetic field and gradient can be analyzed. The derived model is general and can be applied to other magneto-oscillatory systems interacting with magnetic environments.
Abstract:Magnetism is widely used for the wireless localization and actuation of robots and devices for medical procedures. However, current static magnetic localization methods suffer from large required magnets and are limited to only five degrees of freedom due to a fundamental constraint of the rotational symmetry around the magnetic axis. We present the small-scale magneto-oscillatory localization (SMOL) method, which is capable of wirelessly localizing a millimeter-scale tracker with full six degrees of freedom in deep biological tissues. The SMOL device uses the temporal oscillation of a mechanically resonant cantilever with a magnetic dipole to break the rotational symmetry, and exploits the frequency-response to achieve a high signal-to-noise ratio with sub-millimeter accuracy over a large distance of up to 12 centimeters and quasi-continuous refresh rates up to 200 Hz. Integration into real-time closed-loop controlled robots and minimally-invasive surgical tools are demonstrated to reveal the vast potential of the SMOL method.
Abstract:The relation extraction (RE) in complex scenarios faces challenges such as diverse relation types and ambiguous relations between entities within a single sentence, leading to the poor performance of pure "text-in, text-out" language models (LMs). To address these challenges, in this paper, we propose an agent-based RE framework, namely AgentRE, which fully leverages the potential of large language models (LLMs) including memory, retrieval and reflection, to achieve RE in complex scenarios. Specifically, three major modules are built in AgentRE serving as the tools to help the agent acquire and process various useful information, thereby obtaining improved RE performance. Our extensive experimental results upon two datasets in English and Chinese demonstrate our AgentRE's superior performance, especially in low-resource scenarios. Additionally, the trajectories generated by AgentRE can be refined to construct a high-quality training dataset incorporating different reasoning methods, which can be used to fine-tune smaller models. Code is available at https://github.com/Lightblues/AgentRE.
Abstract:Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmGPT, a suite of multilingual LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus of hundreds of billions of tokens tailored to the Bio-Pharmaceutical and Chemical sectors. Our evaluation shows that PharmGPT matches or surpasses existing general models on key benchmarks, such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. This advancement establishes a new benchmark for LLMs in the Bio-Pharmaceutical and Chemical fields, addressing the existing gap in specialized language modeling. Furthermore, this suggests a promising path for enhanced research and development in these specialized areas, paving the way for more precise and effective applications of NLP in specialized domains.
Abstract:Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmGPT, a suite of multilingual LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus of hundreds of billions of tokens tailored to the Bio-Pharmaceutical and Chemical sectors. Our evaluation shows that PharmGPT matches or surpasses existing general models on key benchmarks, such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. This advancement establishes a new benchmark for LLMs in the Bio-Pharmaceutical and Chemical fields, addressing the existing gap in specialized language modeling. Furthermore, this suggests a promising path for enhanced research and development in these specialized areas, paving the way for more precise and effective applications of NLP in specialized domains.
Abstract:In recent years, large language models have attracted significant attention due to their exceptional performance across a multitude of natural language process tasks, and have been widely applied in various fields. However, the application of large language models in the Intellectual Property (IP) space is challenging due to the strong need for specialized knowledge, privacy protection, processing of extremely long text in this field. In this technical report, we present for the first time a low-cost, standardized procedure for training IP-oriented LLMs, meeting the unique requirements of the IP domain. Using this standard process, we have trained the PatentGPT series models based on open-source pretrained models. By evaluating them on the open-source IP-oriented benchmark MOZIP, our domain-specific LLMs outperforms GPT-4, indicating the effectiveness of the proposed training procedure and the expertise of the PatentGPT models in the IP demain. What is impressive is that our model significantly outperformed GPT-4 on the 2019 China Patent Agent Qualification Examination by achieving a score of 65, reaching the level of human experts. Additionally, the PatentGPT model, which utilizes the SMoE architecture, achieves performance comparable to that of GPT-4 in the IP domain and demonstrates a better cost-performance ratio on long-text tasks, potentially serving as an alternative to GPT-4 within the IP domain.
Abstract:Robotic branch pruning is a significantly growing research area to cope with the shortage of labor force in the context of agriculture. One fundamental requirement in robotic pruning is the perception of detailed geometry and topology of branches. However, the point clouds obtained in agricultural settings often exhibit incompleteness due to several constraints, thereby restricting the accuracy of downstream robotic pruning. In this work, we addressed the issue of point cloud quality through a simulation-based deep neural network, leveraging a Real-to-Simulation (Real2Sim) data generation pipeline that not only eliminates the need for manual parameterization but also guarantees the realism of simulated data. The simulation-based neural network was applied to jointly perform point cloud completion and skeletonization on real-world partial branches, without additional real-world training. The Sim2Real qualitative completion and skeletonization results showed the model's remarkable capability for geometry reconstruction and topology prediction. Additionally, we quantitatively evaluated the Sim2Real performance by comparing branch-level trait characterization errors using raw incomplete data and complete data. The Mean Absolute Error (MAE) reduced by 75% and 8% for branch diameter and branch angle estimation, respectively, using the best complete data, which indicates the effectiveness of the Real2Sim data in a zero-shot generalization setting. The characterization improvements contributed to the precision and efficacy of robotic branch pruning.
Abstract:Small-scale robots hold great potential for targeted cargo delivery in minimally-inv asive medicine. However, current robots often face challenges to locomote efficiently on slip pery biological tissue surfaces, especially when loaded with heavy cargos. Here, we report a magnetic millirobot that can walk on rough and slippery biological tissues by anchoring itself on the soft tissue surface alternatingly with two feet and reciprocally rotating the body to mov e forward. We experimentally studied the locomotion, validated it with numerical simulations and optimized the actuation parameters to fit various terrains and loading conditions. Further more, we developed a permanent magnet set-up to enable wireless actuation within a huma n-scale volume which allows precise control of the millirobot to follow complex trajectories, cl imb vertical walls, and carry cargo up to four times of its own weight. Upon reaching the targ et location, it performs a deployment sequence to release the liquid drug into tissues. The ro bust gait of our millirobot on rough biological terrains, combined with its heavy load capacity, make it a versatile and effective miniaturized vehicle for targeted cargo delivery.
Abstract:On-demand controlled drug delivery is essential for the treatment of a wide range of chronic diseases. As the drug is released at the time when required, its efficacy is boosted and the side effects are minimized. However, so far, drug delivery devices often rely on the passive diffusion process for a sustained release, which is slow and uncontrollable. Here, we present a miniaturized microfluidic device for wirelessly controlled ultrafast active drug delivery, driven by an oscillating solid-liquid interface. The oscillation generates acoustic streaming in the drug reservoir, which opens an elastic valve to deliver the drug. High-speed microscopy reveals the fast response of the valve on the order of 1 ms, which is more than three orders of magnitude faster than the start-of-the-art. The amount of the released drug exhibits a linear relationship with the working time and the electric power applied to the ultrasonic resonator. The trigger of the release is wirelessly controlled via a magnetic field, and the system shows stable output in a continuous experiment for two weeks. The integrated system shows great promise as a long-term controlled drug delivery implant for chronic diseases.
Abstract:A surge of interest has emerged in utilizing Transformers in diverse vision tasks owing to its formidable performance. However, existing approaches primarily focus on optimizing internal model architecture designs that often entail significant trial and error with high burdens. In this work, we propose a new paradigm dubbed Decision Stream Calibration that boosts the performance of general Vision Transformers. To achieve this, we shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions. Upon further analysis, it was discovered that 1) the final decision is associated with tokens of foreground targets, while token features of foreground target will be transmitted into the next layer as much as possible, and the useless token features of background area will be eliminated gradually in the forward propagation. 2) Each category is solely associated with specific sparse dimensions in the tokens. Based on the discoveries mentioned above, we designed a two-stage calibration scheme, namely ViT-Calibrator, including token propagation calibration stage and dimension propagation calibration stage. Extensive experiments on commonly used datasets show that the proposed approach can achieve promising results. The source codes are given in the supplements.