Abstract:Modern orchards are planted in structured rows with distinct panel divisions to improve management. Accurate and efficient joint segmentation of point cloud from Panel to Tree and Branch (P2TB) is essential for robotic operations. However, most current segmentation methods focus on single instance segmentation and depend on a sequence of deep networks to perform joint tasks. This strategy hinders the use of hierarchical information embedded in the data, leading to both error accumulation and increased costs for annotation and computation, which limits its scalability for real-world applications. In this study, we proposed a novel approach that incorporated a Real2Sim L-TreeGen for training data generation and a joint model (J-P2TB) designed for the P2TB task. The J-P2TB model, trained on the generated simulation dataset, was used for joint segmentation of real-world panel point clouds via zero-shot learning. Compared to representative methods, our model outperformed them in most segmentation metrics while using 40% fewer learnable parameters. This Sim2Real result highlighted the efficacy of L-TreeGen in model training and the performance of J-P2TB for joint segmentation, demonstrating its strong accuracy, efficiency, and generalizability for real-world applications. These improvements would not only greatly benefit the development of robots for automated orchard operations but also advance digital twin technology.
Abstract:Robotic branch pruning is a significantly growing research area to cope with the shortage of labor force in the context of agriculture. One fundamental requirement in robotic pruning is the perception of detailed geometry and topology of branches. However, the point clouds obtained in agricultural settings often exhibit incompleteness due to several constraints, thereby restricting the accuracy of downstream robotic pruning. In this work, we addressed the issue of point cloud quality through a simulation-based deep neural network, leveraging a Real-to-Simulation (Real2Sim) data generation pipeline that not only eliminates the need for manual parameterization but also guarantees the realism of simulated data. The simulation-based neural network was applied to jointly perform point cloud completion and skeletonization on real-world partial branches, without additional real-world training. The Sim2Real qualitative completion and skeletonization results showed the model's remarkable capability for geometry reconstruction and topology prediction. Additionally, we quantitatively evaluated the Sim2Real performance by comparing branch-level trait characterization errors using raw incomplete data and complete data. The Mean Absolute Error (MAE) reduced by 75% and 8% for branch diameter and branch angle estimation, respectively, using the best complete data, which indicates the effectiveness of the Real2Sim data in a zero-shot generalization setting. The characterization improvements contributed to the precision and efficacy of robotic branch pruning.