Abstract:Logical reasoning is essential for large language models (LLMs) to ensure accurate and coherent inference. However, LLMs struggle with reasoning order variations and fail to generalize across logically equivalent transformations. LLMs often rely on fixed sequential patterns rather than true logical understanding. To address this issue, we introduce an order-centric data augmentation framework based on commutativity in logical reasoning. We first randomly shuffle independent premises to introduce condition order augmentation. For reasoning steps, we construct a directed acyclic graph (DAG) to model dependencies between steps, which allows us to identify valid reorderings of steps while preserving logical correctness. By leveraging order-centric augmentations, models can develop a more flexible and generalized reasoning process. Finally, we conduct extensive experiments across multiple logical reasoning benchmarks, demonstrating that our method significantly enhances LLMs' reasoning performance and adaptability to diverse logical structures. We release our codes and augmented data in https://anonymous.4open.science/r/Order-Centric-Data-Augmentation-822C/.
Abstract:Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs). An observation is that the LLMs exhibit dramatic performance fluctuation when disturbing the order of the incorporated constraints. Yet, none of the existing works has systematically investigated this position bias problem in the field of multi-constraint instruction following. To bridge this gap, we design a probing task where we quantitatively measure the difficulty distribution of the constraints by a novel Difficulty Distribution Index (CDDI). Through the experimental results, we find that LLMs are more performant when presented with the constraints in a ``hard-to-easy'' order. This preference can be generalized to LLMs with different architecture or different sizes of parameters. Additionally, we conduct an explanation study, providing an intuitive insight into the correlation between the LLM's attention and constraint orders. Our code and dataset are publicly available at https://github.com/meowpass/PBIF.
Abstract:It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, soft constraints are semantically related and difficult to verify through automated methods. These constraints remain a significant challenge for LLMs. To enhance the ability of LLMs to follow soft constraints, we initially design a pipeline to obtain high-quality outputs automatically. Additionally, to fully utilize the acquired data, we introduce a training paradigm based on curriculum learning. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements. The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraints.
Abstract:Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task. In the past it uses reinforcement learning from human feedback (RLHF) algorithm to optimize the LLM policy to align with these preferences and not to draft too far from the original model. Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method. Using preference pairs of chosen and reject data, DPO models the relative log probability as implicit reward function and optimize LLM policy using a simple binary cross entropy objective directly. DPO is quite straight forward and easy to be understood. It perform efficiently and well in most cases. In this article, we analyze the working mechanism of $\beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification. With these insights, we propose MinorDPO, which is better aligned to the original RL algorithm, and increase the stability of preference optimization process.
Abstract:Instruct LLM provide a paradigm used in large scale language model to align LLM to human preference. The paradigm contains supervised fine tuning and reinforce learning from human feedback. This paradigm is also used in downstream scenarios to adapt LLM to specific corpora and applications. Comparing to SFT, there are many efforts focused on RLHF and several algorithms being proposed, such as PPO, DPO, IPO, KTO, MinorDPO and etc. Meanwhile most efforts for SFT are focused on how to collect, filter and mix high quality data. In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness, and reduce the discrepancy between the optimized LLM and original LLM.