Abstract:Medical time series (MedTS) classification is crucial for improved diagnosis in healthcare, and yet it is challenging due to the varying granularity of patterns, intricate inter-channel correlation, information redundancy, and label scarcity. While existing transformer-based models have shown promise in time series analysis, they mainly focus on forecasting and fail to fully exploit the distinctive characteristics of MedTS data. In this paper, we introduce Sparseformer, a transformer specifically designed for MedTS classification. We propose a sparse token-based dual-attention mechanism that enables global modeling and token compression, allowing dynamic focus on the most informative tokens while distilling redundant features. This mechanism is then applied to the multi-granularity, cross-channel encoding of medical signals, capturing intra- and inter-granularity correlations and inter-channel connections. The sparsification design allows our model to handle heterogeneous inputs of varying lengths and channels directly. Further, we introduce an adaptive label encoder to address label space misalignment across datasets, equipping our model with cross-dataset transferability to alleviate the medical label scarcity issue. Our model outperforms 12 baselines across seven medical datasets under supervised learning. In the few-shot learning experiments, our model also achieves superior average results. In addition, the in-domain and cross-domain experiments among three diagnostic scenarios demonstrate our model's zero-shot learning capability. Collectively, these findings underscore the robustness and transferability of our model in various medical applications.
Abstract:Accurate Subseasonal-to-Seasonal (S2S) climate forecasting is pivotal for decision-making including agriculture planning and disaster preparedness but is known to be challenging due to its chaotic nature. Although recent data-driven models have shown promising results, their performance is limited by inadequate consideration of geometric inductive biases. Usually, they treat the spherical weather data as planar images, resulting in an inaccurate representation of locations and spatial relations. In this work, we propose the geometric-inspired Circular Transformer (CirT) to model the cyclic characteristic of the graticule, consisting of two key designs: (1) Decomposing the weather data by latitude into circular patches that serve as input tokens to the Transformer; (2) Leveraging Fourier transform in self-attention to capture the global information and model the spatial periodicity. Extensive experiments on the Earth Reanalysis 5 (ERA5) reanalysis dataset demonstrate our model yields a significant improvement over the advanced data-driven models, including PanguWeather and GraphCast, as well as skillful ECMWF systems. Additionally, we empirically show the effectiveness of our model designs and high-quality prediction over spatial and temporal dimensions.
Abstract:Recent research has shown that large language models (LLMs) can be effectively used for real-world time series forecasting due to their strong natural language understanding capabilities. However, aligning time series into semantic spaces of LLMs comes with high computational costs and inference complexity, particularly for long-range time series generation. Building on recent advancements in using linear models for time series, this paper introduces an LLM-enhanced mixture of linear experts for precise and efficient time series forecasting. This approach involves developing a mixture of linear experts with multiple lookback lengths and a new multimodal fusion mechanism. The use of a mixture of linear experts is efficient due to its simplicity, while the multimodal fusion mechanism adaptively combines multiple linear experts based on the learned features of the text modality from pre-trained large language models. In experiments, we rethink the need to align time series to LLMs by existing time-series large language models and further discuss their efficiency and effectiveness in time series forecasting. Our experimental results show that the proposed LeMoLE model presents lower prediction errors and higher computational efficiency than existing LLM models.
Abstract:In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
Abstract:Graph Anomaly Detection (GAD) is a challenging and practical research topic where Graph Neural Networks (GNNs) have recently shown promising results. The effectiveness of existing GNNs in GAD has been mainly attributed to the simultaneous learning of node representations and the classifier in an end-to-end manner. Meanwhile, graph pre-training, the two-stage learning paradigm such as DGI and GraphMAE, has shown potential in leveraging unlabeled graph data to enhance downstream tasks, yet its impact on GAD remains under-explored. In this work, we show that graph pre-training models are strong graph anomaly detectors. Specifically, we demonstrate that pre-training is highly competitive, markedly outperforming the state-of-the-art end-to-end training models when faced with limited supervision. To understand this phenomenon, we further uncover pre-training enhances the detection of distant, under-represented, unlabeled anomalies that go beyond 2-hop neighborhoods of known anomalies, shedding light on its superior performance against end-to-end models. Moreover, we extend our examination to the potential of pre-training in graph-level anomaly detection. We envision this work to stimulate a re-evaluation of pre-training's role in GAD and offer valuable insights for future research.
Abstract:Large Language Models (LLMs) have shown considerable promise in code generation. However, the automation sector, especially in motion control, continues to rely heavily on manual programming due to the complexity of tasks and critical safety considerations. In this domain, incorrect code execution can pose risks to both machinery and personnel, necessitating specialized expertise. To address these challenges, we introduce MCCoder, an LLM-powered system designed to generate code that addresses complex motion control tasks, with integrated soft-motion data verification. MCCoder enhances code generation through multitask decomposition, hybrid retrieval-augmented generation (RAG), and self-correction with a private motion library. Moreover, it supports data verification by logging detailed trajectory data and providing simulations and plots, allowing users to assess the accuracy of the generated code and bolstering confidence in LLM-based programming. To ensure robust validation, we propose MCEVAL, an evaluation dataset with metrics tailored to motion control tasks of varying difficulties. Experiments indicate that MCCoder improves performance by 11.61% overall and by 66.12% on complex tasks in MCEVAL dataset compared with base models with naive RAG. This system and dataset aim to facilitate the application of code generation in automation settings with strict safety requirements. MCCoder is publicly available at https://github.com/MCCodeAI/MCCoder.
Abstract:Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. We will release our code and datasets upon acceptance.
Abstract:In various scientific and engineering fields, the primary research areas have revolved around physics-based dynamical systems modeling and data-driven time series analysis. According to the embedding theory, dynamical systems and time series can be mutually transformed using observation functions and physical reconstruction techniques. Based on this, we propose Embedding Duality Theory, where the parameterized embedding layer essentially provides a linear estimation of the non-linear time series dynamics. This theory enables us to bypass the parameterized embedding layer and directly employ physical reconstruction techniques to acquire a data embedding representation. Utilizing physical priors results in a 10X reduction in parameters, a 3X increase in speed, and maximum performance boosts of 18% in expert, 22% in few-shot, and 53\% in zero-shot tasks without any hyper-parameter tuning. All methods are encapsulated as a plug-and-play module
Abstract:Through the collaboration of multiple agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within these systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task is effectively resolved, leading to satisfactory responses to the original queries. These principles further inspire us to propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. During the planning process, the meta-agent is also responsible for evaluating the performance of the expert agents, making timely adjustments to the sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of the proposed framework in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
Abstract:The recent rapid development of language models (LMs) has attracted attention in the field of time series, including multimodal time series modeling. However, we note that current time series multimodal methods are biased, often assigning a primary role to one modality while the other assumes a secondary role. They overlook the mutual benefits and complementary of different modalities. For example, in seizure diagnosis, relying solely on textual clinical reports makes it difficult to pinpoint the area and type of the disease, while electroencephalograms (EEGs) alone cannot provide an accurate diagnosis without considering the symptoms. In this study, based on the complementary information mining of time series multimodal data, we propose DualTime, a Dual-adapter multimodal language model for Time series representation implementing temporal-primary and textual-primary modeling simultaneously. By injecting lightweight adaption tokens, the LM pipeline shared by dual adapters encourages embedding alignment and achieves efficient fine-tuning. Empirically, our method outperforms state-of-the-art models in both supervised and unsupervised settings, highlighting the complementary benefits of different modalities. In addition, we conduct few-shot label transfer experiments, which further verifies the transferability and expressiveness of our proposed DualTime.