Abstract:Fashion aesthetic evaluation is the task of estimating how well the outfits worn by individuals in images suit them. In this work, we examine the zero-shot performance of GPT-4V on this task for the first time. We show that its predictions align fairly well with human judgments on our datasets, and also find that it struggles with ranking outfits in similar colors. The code is available at https://github.com/st-tech/gpt4v-fashion-aesthetic-evaluation.
Abstract:Some datasets with the described content and order of occurrence of sounds have been released for conversion between environmental sound and text. However, there are very few texts that include information on the impressions humans feel, such as "sharp" and "gorgeous," when they hear environmental sounds. In this study, we constructed a dataset with impression captions for environmental sounds that describe the impressions humans have when hearing these sounds. We used ChatGPT to generate impression captions and selected the most appropriate captions for sound by humans. Our dataset consists of 3,600 impression captions for environmental sounds. To evaluate the appropriateness of impression captions for environmental sounds, we conducted subjective and objective evaluations. From our evaluation results, we indicate that appropriate impression captions for environmental sounds can be generated.
Abstract:Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. We will release our code and datasets upon acceptance.
Abstract:We present our system (denoted as T05) for the VoiceMOS Challenge (VMC) 2024. Our system was designed for the VMC 2024 Track 1, which focused on the accurate prediction of naturalness mean opinion score (MOS) for high-quality synthetic speech. In addition to a pretrained self-supervised learning (SSL)-based speech feature extractor, our system incorporates a pretrained image feature extractor to capture the difference of synthetic speech observed in speech spectrograms. We first separately train two MOS predictors that use either of an SSL-based or spectrogram-based feature. Then, we fine-tune the two predictors for better MOS prediction using the fusion of two extracted features. In the VMC 2024 Track 1, our T05 system achieved first place in 7 out of 16 evaluation metrics and second place in the remaining 9 metrics, with a significant difference compared to those ranked third and below. We also report the results of our ablation study to investigate essential factors of our system.
Abstract:We explore cross-dialect text-to-speech (CD-TTS), a task to synthesize learned speakers' voices in non-native dialects, especially in pitch-accent languages. CD-TTS is important for developing voice agents that naturally communicate with people across regions. We present a novel TTS model comprising three sub-modules to perform competitively at this task. We first train a backbone TTS model to synthesize dialect speech from a text conditioned on phoneme-level accent latent variables (ALVs) extracted from speech by a reference encoder. Then, we train an ALV predictor to predict ALVs tailored to a target dialect from input text leveraging our novel multi-dialect phoneme-level BERT. We conduct multi-dialect TTS experiments and evaluate the effectiveness of our model by comparing it with a baseline derived from conventional dialect TTS methods. The results show that our model improves the dialectal naturalness of synthetic speech in CD-TTS.
Abstract:In this work, we propose a fashion item recommendation model that incorporates hyperbolic geometry into user and item representations. Using hyperbolic space, our model aims to capture implicit hierarchies among items based on their visual data and users' purchase history. During training, we apply a multi-task learning framework that considers both hyperbolic and Euclidean distances in the loss function. Our experiments on three data sets show that our model performs better than previous models trained in Euclidean space only, confirming the effectiveness of our model. Our ablation studies show that multi-task learning plays a key role, and removing the Euclidean loss substantially deteriorates the model performance.
Abstract:Spoken dialogue plays a crucial role in human-AI interactions, necessitating dialogue-oriented spoken language models (SLMs). To develop versatile SLMs, large-scale and diverse speech datasets are essential. Additionally, to ensure hiqh-quality speech generation, the data must be spontaneous like in-wild data and must be acoustically clean with noise removed. Despite the critical need, no open-source corpus meeting all these criteria has been available. This study addresses this gap by constructing and releasing a large-scale spoken dialogue corpus, named Japanese Corpus for Human-AI Talks (J-CHAT), which is publicly accessible. Furthermore, this paper presents a language-independent method for corpus construction and describes experiments on dialogue generation using SLMs trained on J-CHAT. Experimental results indicate that the collected data from multiple domains by our method improve the naturalness and meaningfulness of dialogue generation.
Abstract:This paper proposes a new task called spatial voice conversion, which aims to convert a target voice while preserving spatial information and non-target signals. Traditional voice conversion methods focus on single-channel waveforms, ignoring the stereo listening experience inherent in human hearing. Our baseline approach addresses this gap by integrating blind source separation (BSS), voice conversion (VC), and spatial mixing to handle multi-channel waveforms. Through experimental evaluations, we organize and identify the key challenges inherent in this task, such as maintaining audio quality and accurately preserving spatial information. Our results highlight the fundamental difficulties in balancing these aspects, providing a benchmark for future research in spatial voice conversion. The proposed method's code is publicly available to encourage further exploration in this domain.
Abstract:We propose noise-robust voice conversion (VC) which takes into account the recording quality and environment of noisy source speech. Conventional denoising training improves the noise robustness of a VC model by learning noisy-to-clean VC process. However, the naturalness of the converted speech is limited when the noise of the source speech is unseen during the training. To this end, our proposed training conditions a VC model on two latent variables representing the recording quality and environment of the source speech. These latent variables are derived from deep neural networks pre-trained on recording quality assessment and acoustic scene classification and calculated in an utterance-wise or frame-wise manner. As a result, the trained VC model can explicitly learn information about speech degradation during the training. Objective and subjective evaluations show that our training improves the quality of the converted speech compared to the conventional training.
Abstract:We present SRC4VC, a new corpus containing 11 hours of speech recorded on smartphones by 100 Japanese speakers. Although high-quality multi-speaker corpora can advance voice conversion (VC) technologies, they are not always suitable for testing VC when low-quality speech recording is given as the input. To this end, we first asked 100 crowdworkers to record their voice samples using smartphones. Then, we annotated the recorded samples with speaker-wise recording-quality scores and utterance-wise perceived emotion labels. We also benchmark SRC4VC on any-to-any VC, in which we trained a multi-speaker VC model on high-quality speech and used the SRC4VC speakers' voice samples as the source in VC. The results show that the recording quality mismatch between the training and evaluation data significantly degrades the VC performance, which can be improved by applying speech enhancement to the low-quality source speech samples.