Abstract:Image generation in the fashion domain has predominantly focused on preserving body characteristics or following input prompts, but little attention has been paid to improving the inherent fashionability of the output images. This paper presents a novel diffusion model-based approach that generates fashion images with improved fashionability while maintaining control over key attributes. Key components of our method include: 1) fashionability enhancement, which ensures that the generated images are more fashionable than the input; 2) preservation of body characteristics, encouraging the generated images to maintain the original shape and proportions of the input; and 3) automatic fashion optimization, which does not rely on manual input or external prompts. We also employ two methods to collect training data for guidance while generating and evaluating the images. In particular, we rate outfit images using fashionability scores annotated by multiple fashion experts through OpenSkill-based and five critical aspect-based pairwise comparisons. These methods provide complementary perspectives for assessing and improving the fashionability of the generated images. The experimental results show that our approach outperforms the baseline Fashion++ in generating images with superior fashionability, demonstrating its effectiveness in producing more stylish and appealing fashion images.
Abstract:Fashion aesthetic evaluation is the task of estimating how well the outfits worn by individuals in images suit them. In this work, we examine the zero-shot performance of GPT-4V on this task for the first time. We show that its predictions align fairly well with human judgments on our datasets, and also find that it struggles with ranking outfits in similar colors. The code is available at https://github.com/st-tech/gpt4v-fashion-aesthetic-evaluation.
Abstract:In this work, we propose a fashion item recommendation model that incorporates hyperbolic geometry into user and item representations. Using hyperbolic space, our model aims to capture implicit hierarchies among items based on their visual data and users' purchase history. During training, we apply a multi-task learning framework that considers both hyperbolic and Euclidean distances in the loss function. Our experiments on three data sets show that our model performs better than previous models trained in Euclidean space only, confirming the effectiveness of our model. Our ablation studies show that multi-task learning plays a key role, and removing the Euclidean loss substantially deteriorates the model performance.
Abstract:Conventional machine learning algorithms have traditionally been designed under the assumption that input data follows a vector-based format, with an emphasis on vector-centric paradigms. However, as the demand for tasks involving set-based inputs has grown, there has been a paradigm shift in the research community towards addressing these challenges. In recent years, the emergence of neural network architectures such as Deep Sets and Transformers has presented a significant advancement in the treatment of set-based data. These architectures are specifically engineered to naturally accommodate sets as input, enabling more effective representation and processing of set structures. Consequently, there has been a surge of research endeavors dedicated to exploring and harnessing the capabilities of these architectures for various tasks involving the approximation of set functions. This comprehensive survey aims to provide an overview of the diverse problem settings and ongoing research efforts pertaining to neural networks that approximate set functions. By delving into the intricacies of these approaches and elucidating the associated challenges, the survey aims to equip readers with a comprehensive understanding of the field. Through this comprehensive perspective, we hope that researchers can gain valuable insights into the potential applications, inherent limitations, and future directions of set-based neural networks. Indeed, from this survey we gain two insights: i) Deep Sets and its variants can be generalized by differences in the aggregation function, and ii) the behavior of Deep Sets is sensitive to the choice of the aggregation function. From these observations, we show that Deep Sets, one of the well-known permutation-invariant neural networks, can be generalized in the sense of a quasi-arithmetic mean.