Abstract:Generative speech enhancement (GSE) models show great promise in producing high-quality clean speech from noisy inputs, enabling applications such as curating noisy text-to-speech (TTS) datasets into high-quality ones. However, GSE models are prone to hallucination errors, such as phoneme omissions and speaker inconsistency, which conventional error filtering based on non-intrusive speech quality metrics often fails to detect. To address this issue, we propose a non-intrusive method for filtering hallucination errors from discrete token-based GSE models. Our method leverages the log-probabilities of generated tokens as confidence scores to detect potential errors. Experimental results show that the confidence scores strongly correlate with a suite of intrusive SE metrics, and that our method effectively identifies hallucination errors missed by conventional filtering methods. Furthermore, we demonstrate the practical utility of our method: curating an in-the-wild TTS dataset with our confidence-based filtering improves the performance of subsequently trained TTS models.
Abstract:We explore cross-dialect text-to-speech (CD-TTS), a task to synthesize learned speakers' voices in non-native dialects, especially in pitch-accent languages. CD-TTS is important for developing voice agents that naturally communicate with people across regions. We present a novel TTS model comprising three sub-modules to perform competitively at this task. We first train a backbone TTS model to synthesize dialect speech from a text conditioned on phoneme-level accent latent variables (ALVs) extracted from speech by a reference encoder. Then, we train an ALV predictor to predict ALVs tailored to a target dialect from input text leveraging our novel multi-dialect phoneme-level BERT. We conduct multi-dialect TTS experiments and evaluate the effectiveness of our model by comparing it with a baseline derived from conventional dialect TTS methods. The results show that our model improves the dialectal naturalness of synthetic speech in CD-TTS.




Abstract:We present UTDUSS, the UTokyo-SaruLab system submitted to Interspeech2024 Speech Processing Using Discrete Speech Unit Challenge. The challenge focuses on using discrete speech unit learned from large speech corpora for some tasks. We submitted our UTDUSS system to two text-to-speech tracks: Vocoder and Acoustic+Vocoder. Our system incorporates neural audio codec (NAC) pre-trained on only speech corpora, which makes the learned codec represent rich acoustic features that are necessary for high-fidelity speech reconstruction. For the acoustic+vocoder track, we trained an acoustic model based on Transformer encoder-decoder that predicted the pre-trained NAC tokens from text input. We describe our strategies to build these models, such as data selection, downsampling, and hyper-parameter tuning. Our system ranked in second and first for the Vocoder and Acoustic+Vocoder tracks, respectively.
Abstract:We propose StyleCap, a method to generate natural language descriptions of speaking styles appearing in speech. Although most of conventional techniques for para-/non-linguistic information recognition focus on the category classification or the intensity estimation of pre-defined labels, they cannot provide the reasoning of the recognition result in an interpretable manner. As a first step towards an end-to-end method for generating speaking-style prompts from speech, i.e., automatic speaking-style captioning, StyleCap uses paired data of speech and natural language descriptions to train neural networks that predict prefix vectors fed into a large language model (LLM)-based text decoder from a speech representation vector. We explore an appropriate text decoder and speech feature representation suitable for this new task. The experimental results demonstrate that our StyleCap leveraging richer LLMs for the text decoder, speech self-supervised learning (SSL) features, and sentence rephrasing augmentation improves the accuracy and diversity of generated speaking-style captions. Samples of speaking-style captions generated by our StyleCap are publicly available.