Abstract:Heterogeneous Text-Attributed Graphs (HTAGs), where different types of entities are not only associated with texts but also connected by diverse relationships, have gained widespread popularity and application across various domains. However, current research on text-attributed graph learning predominantly focuses on homogeneous graphs, which feature a single node and edge type, thus leaving a gap in understanding how methods perform on HTAGs. One crucial reason is the lack of comprehensive HTAG datasets that offer original textual content and span multiple domains of varying sizes. To this end, we introduce a collection of challenging and diverse benchmark datasets for realistic and reproducible evaluation of machine learning models on HTAGs. Our HTAG datasets are multi-scale, span years in duration, and cover a wide range of domains, including movie, community question answering, academic, literature, and patent networks. We further conduct benchmark experiments on these datasets with various graph neural networks. All source data, dataset construction codes, processed HTAGs, data loaders, benchmark codes, and evaluation setup are publicly available at GitHub and Hugging Face.
Abstract:Heterogeneous Graph Neural Networks (HGNNs) have achieved promising results in various heterogeneous graph learning tasks, owing to their superiority in capturing the intricate relationships and diverse relational semantics inherent in heterogeneous graph structures. However, the neighborhood-fetching latency incurred by structure dependency in HGNNs makes it challenging to deploy for latency-constrained applications that require fast inference. Inspired by recent GNN-to-MLP knowledge distillation frameworks, we introduce HG2M and HG2M+ to combine both HGNN's superior performance and MLP's efficient inference. HG2M directly trains student MLPs with node features as input and soft labels from teacher HGNNs as targets, and HG2M+ further distills reliable and heterogeneous semantic knowledge into student MLPs through reliable node distillation and reliable meta-path distillation. Experiments conducted on six heterogeneous graph datasets show that despite lacking structural dependencies, HG2Ms can still achieve competitive or even better performance than HGNNs and significantly outperform vanilla MLPs. Moreover, HG2Ms demonstrate a 379.24$\times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset, showcasing their ability for latency-sensitive deployments.
Abstract:Graph Contrastive Learning (GCL) has recently emerged as a promising graph self-supervised learning framework for learning discriminative node representations without labels. The widely adopted objective function of GCL benefits from two key properties: \emph{alignment} and \emph{uniformity}, which align representations of positive node pairs while uniformly distributing all representations on the hypersphere. The uniformity property plays a critical role in preventing representation collapse and is achieved by pushing apart augmented views of different nodes (negative pairs). As such, existing GCL methods inherently rely on increasing the quantity and quality of negative samples, resulting in heavy computational demands, memory overhead, and potential class collision issues. In this study, we propose a negative-free objective to achieve uniformity, inspired by the fact that points distributed according to a normalized isotropic Gaussian are uniformly spread across the unit hypersphere. Therefore, we can minimize the distance between the distribution of learned representations and the isotropic Gaussian distribution to promote the uniformity of node representations. Our method also distinguishes itself from other approaches by eliminating the need for a parameterized mutual information estimator, an additional projector, asymmetric structures, and, crucially, negative samples. Extensive experiments over seven graph benchmarks demonstrate that our proposal achieves competitive performance with fewer parameters, shorter training times, and lower memory consumption compared to existing GCL methods.
Abstract:Attributed graph clustering, which aims to group the nodes of an attributed graph into disjoint clusters, has made promising advancements in recent years. However, most existing methods face challenges when applied to large graphs due to the expensive computational cost and high memory usage. In this paper, we introduce Scalable and Adaptive Spectral Embedding (SASE), a simple attributed graph clustering method devoid of parameter learning. SASE comprises three main components: node features smoothing via $k$-order simple graph convolution, scalable spectral clustering using random Fourier features, and adaptive order selection. With these designs, SASE not only effectively captures global cluster structures but also exhibits linear time and space complexity relative to the graph size. Empirical results demonstrate the superiority of SASE. For example, on the ArXiv dataset with 169K nodes and 1.17M edges, SASE achieves a 6.9\% improvement in ACC and a $5.87\times$ speedup compared to the runner-up, S3GC.
Abstract:Contrastive learning is a significant paradigm in graph self-supervised learning. However, it requires negative samples to prevent model collapse and learn discriminative representations. These negative samples inevitably lead to heavy computation, memory overhead and class collision, compromising the representation learning. Recent studies present that methods obviating negative samples can attain competitive performance and scalability enhancements, exemplified by bootstrapped graph latents (BGRL). However, BGRL neglects the inherent graph homophily, which provides valuable insights into underlying positive pairs. Our motivation arises from the observation that subtly introducing a few ground-truth positive pairs significantly improves BGRL. Although we can't obtain ground-truth positive pairs without labels under the self-supervised setting, edges in the graph can reflect noisy positive pairs, i.e., neighboring nodes often share the same label. Therefore, we propose to expand the positive pair set with node-neighbor pairs. Subsequently, we introduce a cross-attention module to predict the supportiveness score of a neighbor with respect to the anchor node. This score quantifies the positive support from each neighboring node, and is encoded into the training objective. Consequently, our method mitigates class collision from negative and noisy positive samples, concurrently enhancing intra-class compactness. Extensive experiments are conducted on five benchmark datasets and three downstream task node classification, node clustering, and node similarity search. The results demonstrate that our method generates node representations with enhanced intra-class compactness and achieves state-of-the-art performance.
Abstract:Graph clustering, which involves the partitioning of nodes within a graph into disjoint clusters, holds significant importance for numerous subsequent applications. Recently, contrastive learning, known for utilizing supervisory information, has demonstrated encouraging results in deep graph clustering. This methodology facilitates the learning of favorable node representations for clustering by attracting positively correlated node pairs and distancing negatively correlated pairs within the representation space. Nevertheless, a significant limitation of existing methods is their inadequacy in thoroughly exploring node-wise similarity. For instance, some hypothesize that the node similarity matrix within the representation space is identical, ignoring the inherent semantic relationships among nodes. Given the fundamental role of instance similarity in clustering, our research investigates contrastive graph clustering from the perspective of the node similarity matrix. We argue that an ideal node similarity matrix within the representation space should accurately reflect the inherent semantic relationships among nodes, ensuring the preservation of semantic similarities in the learned representations. In response to this, we introduce a new framework, Reliable Node Similarity Matrix Guided Contrastive Graph Clustering (NS4GC), which estimates an approximately ideal node similarity matrix within the representation space to guide representation learning. Our method introduces node-neighbor alignment and semantic-aware sparsification, ensuring the node similarity matrix is both accurate and efficiently sparse. Comprehensive experiments conducted on $8$ real-world datasets affirm the efficacy of learning the node similarity matrix and the superior performance of NS4GC.
Abstract:While language models have made many milestones in text inference and classification tasks, they remain susceptible to adversarial attacks that can lead to unforeseen outcomes. Existing works alleviate this problem by equipping language models with defense patches. However, these defense strategies often rely on impractical assumptions or entail substantial sacrifices in model performance. Consequently, enhancing the resilience of the target model using such defense mechanisms is a formidable challenge. This paper introduces an innovative model for robust text inference and classification, built upon diffusion models (ROIC-DM). Benefiting from its training involving denoising stages, ROIC-DM inherently exhibits greater robustness compared to conventional language models. Moreover, ROIC-DM can attain comparable, and in some cases, superior performance to language models, by effectively incorporating them as advisory components. Extensive experiments conducted with several strong textual adversarial attacks on three datasets demonstrate that (1) ROIC-DM outperforms traditional language models in robustness, even when the latter are fortified with advanced defense mechanisms; (2) ROIC-DM can achieve comparable and even better performance than traditional language models by using them as advisors.
Abstract:Federated Recommender Systems (FedRecs) are considered privacy-preserving techniques to collaboratively learn a recommendation model without sharing user data. Since all participants can directly influence the systems by uploading gradients, FedRecs are vulnerable to poisoning attacks of malicious clients. However, most existing poisoning attacks on FedRecs are either based on some prior knowledge or with less effectiveness. To reveal the real vulnerability of FedRecs, in this paper, we present a new poisoning attack method to manipulate target items' ranks and exposure rates effectively in the top-$K$ recommendation without relying on any prior knowledge. Specifically, our attack manipulates target items' exposure rate by a group of synthetic malicious users who upload poisoned gradients considering target items' alternative products. We conduct extensive experiments with two widely used FedRecs (Fed-NCF and Fed-LightGCN) on two real-world recommendation datasets. The experimental results show that our attack can significantly improve the exposure rate of unpopular target items with extremely fewer malicious users and fewer global epochs than state-of-the-art attacks. In addition to disclosing the security hole, we design a novel countermeasure for poisoning attacks on FedRecs. Specifically, we propose a hierarchical gradient clipping with sparsified updating to defend against existing poisoning attacks. The empirical results demonstrate that the proposed defending mechanism improves the robustness of FedRecs.
Abstract:The marriage of federated learning and recommender system (FedRec) has been widely used to address the growing data privacy concerns in personalized recommendation services. In FedRecs, users' attribute information and behavior data (i.e., user-item interaction data) are kept locally on their personal devices, therefore, it is considered a fairly secure approach to protect user privacy. As a result, the privacy issue of FedRecs is rarely explored. Unfortunately, several recent studies reveal that FedRecs are vulnerable to user attribute inference attacks, highlighting the privacy concerns of FedRecs. In this paper, we further investigate the privacy problem of user behavior data (i.e., user-item interactions) in FedRecs. Specifically, we perform the first systematic study on interaction-level membership inference attacks on FedRecs. An interaction-level membership inference attacker is first designed, and then the classical privacy protection mechanism, Local Differential Privacy (LDP), is adopted to defend against the membership inference attack. Unfortunately, the empirical analysis shows that LDP is not effective against such new attacks unless the recommendation performance is largely compromised. To mitigate the interaction-level membership attack threats, we design a simple yet effective defense method to significantly reduce the attacker's inference accuracy without losing recommendation performance. Extensive experiments are conducted with two widely used FedRecs (Fed-NCF and Fed-LightGCN) on three real-world recommendation datasets (MovieLens-100K, Steam-200K, and Amazon Cell Phone), and the experimental results show the effectiveness of our solutions.
Abstract:Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable. To solve the problems, we propose a model named Unified-QG based on lifelong learning techniques, which can continually learn QG tasks across different datasets and formats. Specifically, we first build a format-convert encoding to transform different kinds of QG formats into a unified representation. Then, a method named \emph{STRIDER} (\emph{S}imilari\emph{T}y \emph{R}egular\emph{I}zed \emph{D}ifficult \emph{E}xample \emph{R}eplay) is built to alleviate catastrophic forgetting in continual QG learning. Extensive experiments were conducted on $8$ QG datasets across $4$ QG formats (answer-extraction, answer-abstraction, multi-choice, and boolean QG) to demonstrate the effectiveness of our approach. Experimental results demonstrate that our Unified-QG can effectively and continually adapt to QG tasks when datasets and formats vary. In addition, we verify the ability of a single trained Unified-QG model in improving $8$ Question Answering (QA) systems' performance through generating synthetic QA data.