Abstract:Question Answering (QA) systems face challenges in handling complex questions that require multi-domain knowledge synthesis. The naive RAG models, although effective in information retrieval, struggle with complex questions that require comprehensive and in-depth answers. The pioneering task is defined as explanatory answer generation, which entails handling identified challenges such as the requirement for comprehensive information and logical coherence within the generated context. To address these issues, we refer to systematic thinking theory and propose SynthRAG, an innovative framework designed to enhance QA performance. SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring, generating systematic information to ensure detailed coverage, and producing customized answers tailored to specific user inquiries. This structured approach guarantees logical coherence and thorough integration of information, yielding responses that are both insightful and methodically organized. Empirical evaluations underscore SynthRAG's effectiveness, demonstrating its superiority in handling complex questions, overcoming the limitations of naive RAG models, and significantly improving answer quality and depth. Furthermore, an online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement, with each response averaging 5.73 upvotes and surpassing the performance of 79.8% of human contributors, highlighting the practical relevance and impact of the proposed framework. Our code is available at https://github.com/czy1999/SynthRAG .
Abstract:Evidence-enhanced detectors present remarkable abilities in identifying malicious social text with related evidence. However, the rise of large language models (LLMs) brings potential risks of evidence pollution to confuse detectors. This paper explores how to manipulate evidence, simulating potential misuse scenarios including basic pollution, and rephrasing or generating evidence by LLMs. To mitigate its negative impact, we propose three defense strategies from both the data and model sides, including machine-generated text detection, a mixture of experts, and parameter updating. Extensive experiments on four malicious social text detection tasks with ten datasets present that evidence pollution, especially the generate strategy, significantly compromises existing detectors. On the other hand, the defense strategies could mitigate evidence pollution, but they faced limitations for practical employment, such as the need for annotated data and huge inference costs. Further analysis illustrates that polluted evidence is of high quality, would compromise the model calibration, and could ensemble to amplify the negative impact.
Abstract:The construction of large open knowledge bases (OKBs) is integral to many knowledge-driven applications on the world wide web such as web search. However, noun phrases and relational phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Nevertheless, these works fail to fully exploit the synergy between clustering and KGE learning, and the methods designed for these subtasks are sub-optimal. To this end, we put forward a multi-task learning framework, namely MulCanon, to tackle OKB canonicalization. In addition, diffusion model is used in the soft clustering process to improve the noun phrase representations with neighboring information, which can lead to more accurate representations. MulCanon unifies the learning objectives of these sub-tasks, and adopts a two-stage multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization benchmarks validates that MulCanon can achieve competitive canonicalization results.
Abstract:In this paper, we tackle the significant challenge of temporal knowledge reasoning in Large Language Models (LLMs), an area where such models frequently encounter difficulties. These difficulties often result in the generation of misleading or incorrect information, primarily due to their limited capacity to process evolving factual knowledge and complex temporal logic. In response, we propose a novel, constructivism-based approach that advocates for a paradigm shift in LLM learning towards an active, ongoing process of knowledge synthesis and customization. At the heart of our proposal is the Abstract Reasoning Induction ARI framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based. This division aims to reduce instances of hallucinations and improve LLMs' capacity for integrating abstract methodologies derived from historical data. Our approach achieves remarkable improvements, with relative gains of 29.7\% and 9.27\% on two temporal QA datasets, underscoring its efficacy in advancing temporal reasoning in LLMs. The code will be released at https://github.com/czy1999/ARI.
Abstract:The construction of large open knowledge bases (OKBs) is integral to many applications in the field of mobile computing. Noun phrases and relational phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. However, in order to meet the requirements of some privacy protection regulations and to ensure the timeliness of the data, the canonicalized OKB often needs to remove some sensitive information or outdated data. The machine unlearning in OKB canonicalization is an excellent solution to the above problem. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Effective schemes are urgently needed to fully synergise machine unlearning with clustering and KGE learning. To this end, we put forward a multi-task unlearning framework, namely MulCanon, to tackle machine unlearning problem in OKB canonicalization. Specifically, the noise characteristics in the diffusion model are utilized to achieve the effect of machine unlearning for data in OKB. MulCanon unifies the learning objectives of diffusion model, KGE and clustering algorithms, and adopts a two-step multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization datasets validates that MulCanon achieves advanced machine unlearning effects.
Abstract:Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
Abstract:The increasing installation rate of wind power poses great challenges to the global power system. In order to ensure the reliable operation of the power system, it is necessary to accurately forecast the wind speed and power of the wind turbines. At present, deep learning is progressively applied to the wind speed prediction. Nevertheless, the recent deep learning methods still reflect the embarrassment for practical applications due to model interpretability and hardware limitation. To this end, a novel deep knowledge-based learning method is proposed in this paper. The proposed method hybridizes pre-training method and auto-encoder structure to improve data representation and modeling of the deep knowledge-based learning framework. In order to form knowledge and corresponding absorbers, the original data is preprocessed by an optimization model based on correlation to construct multi-layer networks (knowledge) which are absorbed by sequence to sequence (Seq2Seq) models. Specifically, new cognition and memory units (CMU) are designed to reinforce traditional deep learning framework. Finally, the effectiveness of the proposed method is verified by three wind prediction cases from a wind farm in Liaoning, China. Experimental results show that the proposed method increases the stability and training efficiency compared to the traditional LSTM method and LSTM/GRU-based Seq2Seq method for applications of wind speed forecasting.
Abstract:Many AI-related tasks involve the interactions of data in multiple modalities. It has been a new trend to merge multi-modal information into knowledge graph(KG), resulting in multi-modal knowledge graphs (MMKG). However, MMKGs usually suffer from low coverage and incompleteness. To mitigate this problem, a viable approach is to integrate complementary knowledge from other MMKGs. To this end, although existing entity alignment approaches could be adopted, they operate in the Euclidean space, and the resulting Euclidean entity representations can lead to large distortion of KG's hierarchical structure. Besides, the visual information has yet not been well exploited. In response to these issues, in this work, we propose a novel multi-modal entity alignment approach, Hyperbolic multi-modal entity alignment(HMEA), which extends the Euclidean representation to hyperboloid manifold. We first adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to learn structural representations of entities. Regarding the visual information, we generate image embeddings using the densenet model, which are also projected into the hyperbolic space using HGCNs. Finally, we combine the structure and visual representations in the hyperbolic space and use the aggregated embeddings to predict potential alignment results. Extensive experiments and ablation studies demonstrate the effectiveness of our proposed model and its components.
Abstract:Entity alignment (EA) aims to discover the equivalent entities in different knowledge graphs (KGs). It is a pivotal step for integrating KGs to increase knowledge coverage and quality. Recent years have witnessed a rapid increase of EA frameworks. However, state-of-the-art solutions tend to rely on labeled data for model training. Additionally, they work under the closed-domain setting and cannot deal with entities that are unmatchable. To address these deficiencies, we offer an unsupervised framework that performs entity alignment in the open world. Specifically, we first mine useful features from the side information of KGs. Then, we devise an unmatchable entity prediction module to filter out unmatchable entities and produce preliminary alignment results. These preliminary results are regarded as the pseudo-labeled data and forwarded to the progressive learning framework to generate structural representations, which are integrated with the side information to provide a more comprehensive view for alignment. Finally, the progressive learning framework gradually improves the quality of structural embeddings and enhances the alignment performance by enriching the pseudo-labeled data with alignment results from the previous round. Our solution does not require labeled data and can effectively filter out unmatchable entities. Comprehensive experimental evaluations validate its superiority.
Abstract:Entity alignment (EA) is the task of identifying the entities that refer to the same real-world object but are located in different knowledge graphs (KGs). For entities to be aligned, existing EA solutions treat them separately and generate alignment results as ranked lists of entities on the other side. Nevertheless, this decision-making paradigm fails to take into account the interdependence among entities. Although some recent efforts mitigate this issue by imposing the 1-to-1 constraint on the alignment process, they still cannot adequately model the underlying interdependence and the results tend to be sub-optimal. To fill in this gap, in this work, we delve into the dynamics of the decision-making process, and offer a reinforcement learning (RL) based model to align entities collectively. Under the RL framework, we devise the coherence and exclusiveness constraints to characterize the interdependence and restrict collective alignment. Additionally, to generate more precise inputs to the RL framework, we employ representative features to capture different aspects of the similarity between entities in heterogeneous KGs, which are integrated by an adaptive feature fusion strategy. Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks and compared against state-of-the-art solutions. The empirical results verify its effectiveness and superiority.