Abstract:Legal Judgment Prediction (LJP) aims to automatically predict a law case's judgment results based on the text description of its facts. In practice, the confusing law articles (or charges) problem frequently occurs, reflecting that the law cases applicable to similar articles (or charges) tend to be misjudged. Although some recent works based on prior knowledge solve this issue well, they ignore that confusion also occurs between law articles with a high posterior semantic similarity due to the data imbalance problem instead of only between the prior highly similar ones, which is this work's further finding. This paper proposes an end-to-end model named \textit{D-LADAN} to solve the above challenges. On the one hand, D-LADAN constructs a graph among law articles based on their text definition and proposes a graph distillation operation (GDO) to distinguish the ones with a high prior semantic similarity. On the other hand, D-LADAN presents a novel momentum-updated memory mechanism to dynamically sense the posterior similarity between law articles (or charges) and a weighted GDO to adaptively capture the distinctions for revising the inductive bias caused by the data imbalance problem. We perform extensive experiments to demonstrate that D-LADAN significantly outperforms state-of-the-art methods in accuracy and robustness.
Abstract:Recently, multimodal deep learning, which integrates histopathology slides and molecular biomarkers, has achieved a promising performance in glioma grading. Despite great progress, due to the intra-modality complexity and inter-modality heterogeneity, existing studies suffer from inadequate histopathology representation learning and inefficient molecular-pathology knowledge alignment. These two issues hinder existing methods to precisely interpret diagnostic molecular-pathology features, thereby limiting their grading performance. Moreover, the real-world applicability of existing multimodal approaches is significantly restricted as molecular biomarkers are not always available during clinical deployment. To address these problems, we introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference, enhancing molecular-pathology representation effectively. Specifically, we propose a Focus-oriented Representation Learning (FRL) module to encourage the model to identify regions positively or negatively related to glioma grading and guide it to focus on the diagnostic areas with a consistency constraint. To effectively link the molecular biomarkers to morphological features, we propose a Multi-view Cross-modal Alignment (MCA) module that projects histopathology representations into molecular subspaces, aligning morphological features with corresponding molecular biomarker status by supervised contrastive learning. Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading. Remarkably, our FoF achieves superior performance using only histopathology slides compared to existing multimodal methods. The source code is available at https://github.com/peterlipan/FoF.
Abstract:We introduce rLLM (relationLLM), a PyTorch library designed for Relational Table Learning (RTL) with Large Language Models (LLMs). The core idea is to decompose state-of-the-art Graph Neural Networks, LLMs, and Table Neural Networks into standardized modules, to enable the fast construction of novel RTL-type models in a simple "combine, align, and co-train" manner. To illustrate the usage of rLLM, we introduce a simple RTL method named \textbf{BRIDGE}. Additionally, we present three novel relational tabular datasets (TML1M, TLF2K, and TACM12K) by enhancing classic datasets. We hope rLLM can serve as a useful and easy-to-use development framework for RTL-related tasks. Our code is available at: https://github.com/rllm-project/rllm.
Abstract:Most Fake News Detection (FND) methods often struggle with data scarcity for emerging news domain. Recently, prompt learning based on Pre-trained Language Models (PLM) has emerged as a promising approach in domain adaptive few-shot learning, since it greatly reduces the need for labeled data by bridging the gap between pre-training and downstream task. Furthermore, external knowledge is also helpful in verifying emerging news, as emerging news often involves timely knowledge that may not be contained in the PLM's outdated prior knowledge. To this end, we propose COOL, a Comprehensive knOwledge enhanced prOmpt Learning method for domain adaptive few-shot FND. Specifically, we propose a comprehensive knowledge extraction module to extract both structured and unstructured knowledge that are positively or negatively correlated with news from external sources, and adopt an adversarial contrastive enhanced hybrid prompt learning strategy to model the domain-invariant news-knowledge interaction pattern for FND. Experimental results demonstrate the superiority of COOL over various state-of-the-arts.
Abstract:Medical multi-modal pre-training has revealed promise in computer-aided diagnosis by leveraging large-scale unlabeled datasets. However, existing methods based on masked autoencoders mainly rely on data-level reconstruction tasks, but lack high-level semantic information. Furthermore, two significant heterogeneity challenges hinder the transfer of pre-trained knowledge to downstream tasks, \textit{i.e.}, the distribution heterogeneity between pre-training data and downstream data, and the modality heterogeneity within downstream data. To address these challenges, we propose a Unified Medical Multi-modal Diagnostic (UMD) framework with tailored pre-training and downstream tuning strategies. Specifically, to enhance the representation abilities of vision and language encoders, we propose the Multi-level Reconstruction Pre-training (MR-Pretrain) strategy, including a feature-level and data-level reconstruction, which guides models to capture the semantic information from masked inputs of different modalities. Moreover, to tackle two kinds of heterogeneities during the downstream tuning, we present the heterogeneity-combat downstream tuning strategy, which consists of a Task-oriented Distribution Calibration (TD-Calib) and a Gradient-guided Modality Coordination (GM-Coord). In particular, TD-Calib fine-tunes the pre-trained model regarding the distribution of downstream datasets, and GM-Coord adjusts the gradient weights according to the dynamic optimization status of different modalities. Extensive experiments on five public medical datasets demonstrate the effectiveness of our UMD framework, which remarkably outperforms existing approaches on three kinds of downstream tasks.
Abstract:The construction of large open knowledge bases (OKBs) is integral to many knowledge-driven applications on the world wide web such as web search. However, noun phrases and relational phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Nevertheless, these works fail to fully exploit the synergy between clustering and KGE learning, and the methods designed for these subtasks are sub-optimal. To this end, we put forward a multi-task learning framework, namely MulCanon, to tackle OKB canonicalization. In addition, diffusion model is used in the soft clustering process to improve the noun phrase representations with neighboring information, which can lead to more accurate representations. MulCanon unifies the learning objectives of these sub-tasks, and adopts a two-stage multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization benchmarks validates that MulCanon can achieve competitive canonicalization results.
Abstract:The construction of large open knowledge bases (OKBs) is integral to many applications in the field of mobile computing. Noun phrases and relational phrases in OKBs often suffer from redundancy and ambiguity, which calls for the investigation on OKB canonicalization. However, in order to meet the requirements of some privacy protection regulations and to ensure the timeliness of the data, the canonicalized OKB often needs to remove some sensitive information or outdated data. The machine unlearning in OKB canonicalization is an excellent solution to the above problem. Current solutions address OKB canonicalization by devising advanced clustering algorithms and using knowledge graph embedding (KGE) to further facilitate the canonicalization process. Effective schemes are urgently needed to fully synergise machine unlearning with clustering and KGE learning. To this end, we put forward a multi-task unlearning framework, namely MulCanon, to tackle machine unlearning problem in OKB canonicalization. Specifically, the noise characteristics in the diffusion model are utilized to achieve the effect of machine unlearning for data in OKB. MulCanon unifies the learning objectives of diffusion model, KGE and clustering algorithms, and adopts a two-step multi-task learning paradigm for training. A thorough experimental study on popular OKB canonicalization datasets validates that MulCanon achieves advanced machine unlearning effects.
Abstract:Alzheimer's Disease (AD) and related dementia are a growing global health challenge due to the aging population. In this paper, we present ADMarker, the first end-to-end system that integrates multi-modal sensors and new federated learning algorithms for detecting multidimensional AD digital biomarkers in natural living environments. ADMarker features a novel three-stage multi-modal federated learning architecture that can accurately detect digital biomarkers in a privacy-preserving manner. Our approach collectively addresses several major real-world challenges, such as limited data labels, data heterogeneity, and limited computing resources. We built a compact multi-modality hardware system and deployed it in a four-week clinical trial involving 91 elderly participants. The results indicate that ADMarker can accurately detect a comprehensive set of digital biomarkers with up to 93.8% accuracy and identify early AD with an average of 88.9% accuracy. ADMarker offers a new platform that can allow AD clinicians to characterize and track the complex correlation between multidimensional interpretable digital biomarkers, demographic factors of patients, and AD diagnosis in a longitudinal manner.
Abstract:Graph-based semi-supervised learning (GSSL) has long been a hot research topic. Traditional methods are generally shallow learners, based on the cluster assumption. Recently, graph convolutional networks (GCNs) have become the predominant techniques for their promising performance. In this paper, we theoretically discuss the relationship between these two types of methods in a unified optimization framework. One of the most intriguing findings is that, unlike traditional ones, typical GCNs may not jointly consider the graph structure and label information at each layer. Motivated by this, we further propose three simple but powerful graph convolution methods. The first is a supervised method OGC which guides the graph convolution process with labels. The others are two unsupervised methods: GGC and its multi-scale version GGCM, both aiming to preserve the graph structure information during the convolution process. Finally, we conduct extensive experiments to show the effectiveness of our methods.
Abstract:Compared to traditional neural networks with a single exit, a multi-exit network has multiple exits that allow for early output from intermediate layers of the model, thus bringing significant improvement in computational efficiency while maintaining similar recognition accuracy. When attempting to steal such valuable models using traditional model stealing attacks, we found that conventional methods can only steal the model's classification function while failing to capture its output strategy. This results in a significant decrease in computational efficiency for the stolen substitute model, thereby losing the advantages of multi-exit networks.In this paper, we propose the first model stealing attack to extract both the model function and output strategy. We employ bayesian changepoint detection to analyze the target model's output strategy and use performance loss and strategy loss to guide the training of the substitute model. Furthermore, we designed a novel output strategy search algorithm that can find the optimal output strategy to maximize the consistency between the victim model and the substitute model's outputs. Through experiments on multiple mainstream multi-exit networks and benchmark datasets, we thoroughly demonstrates the effectiveness of our method.