Abstract:Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
Abstract:Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.
Abstract:Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
Abstract:Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, utility, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, repetitive, and unoriginal outputs. To address these issues, we propose OmniThink, a machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they progressively deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles.
Abstract:Query routing for retrieval-augmented generation aims to assign an input query to the most suitable search engine. Existing works rely heavily on supervised datasets that require extensive manual annotation, resulting in high costs and limited scalability, as well as poor generalization to out-of-distribution scenarios. To address these challenges, we introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses. This evaluation enables the decision of the most suitable search engine for a given query. By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data. We conduct extensive experiments across five datasets, demonstrating that our method significantly enhances scalability and generalization capabilities.
Abstract:Retrieval-augmented generation (RAG) demonstrates remarkable performance across tasks in open-domain question-answering. However, traditional search engines may retrieve shallow content, limiting the ability of LLMs to handle complex, multi-layered information. To address it, we introduce WebWalkerQA, a benchmark designed to assess the ability of LLMs to perform web traversal. It evaluates the capacity of LLMs to traverse a website's subpages to extract high-quality data systematically. We propose WebWalker, which is a multi-agent framework that mimics human-like web navigation through an explore-critic paradigm. Extensive experimental results show that WebWalkerQA is challenging and demonstrates the effectiveness of RAG combined with WebWalker, through the horizontal and vertical integration in real-world scenarios.
Abstract:In the fast-changing realm of information, the capacity to construct coherent timelines from extensive event-related content has become increasingly significant and challenging. The complexity arises in aggregating related documents to build a meaningful event graph around a central topic. This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning, which offers a fresh perspective on the integration of Large Language Models (LLMs) to tackle the task of Timeline Summarization (TLS). By iteratively reflecting on how events are linked and posing new questions regarding a specific news topic to gather information online or from an offline knowledge base, LLMs produce and refresh chronological summaries based on documents retrieved in each round. Furthermore, we curate Open-TLS, a novel dataset of timelines on recent news topics authored by professional journalists to evaluate open-domain TLS where information overload makes it impossible to find comprehensive relevant documents from the web. Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications, where a related news corpus is provided for summarization.
Abstract:Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model, where queries and candidates can consist of pure text, images, or a combination of both. Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data. However, our preliminary experiments demonstrate that more diverse multimodal training data can further unlock the potential of MLLMs. Despite its effectiveness, the existing multimodal training data is highly imbalanced in terms of modality, which motivates us to develop a training data synthesis pipeline and construct a large-scale, high-quality fused-modal training dataset. Based on the synthetic training data, we develop the General Multimodal Embedder (GME), an MLLM-based dense retriever designed for UMR. Furthermore, we construct a comprehensive UMR Benchmark (UMRB) to evaluate the effectiveness of our approach. Experimental results show that our method achieves state-of-the-art performance among existing UMR methods. Last, we provide in-depth analyses of model scaling, training strategies, and perform ablation studies on both the model and synthetic data.
Abstract:Large Language Models (LLMs) are increasingly recognized for their practical applications. However, these models often encounter challenges in dynamically changing knowledge, as well as in managing unknown static knowledge. Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs. Actually, we find that the impact of RAG on the question answering capabilities of LLMs can be categorized into three groups: beneficial, neutral, and harmful. By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs, while also improving the overall performance of LLMs. This insight motivates us to differentiate between types of questions using certain metrics as indicators, to decrease the retrieval ratio without compromising performance. In our work, we propose a method that is able to identify different types of questions from this view by training a Knowledge Boundary Model (KBM). Experiments conducted on 11 English and Chinese datasets illustrate that the KBM effectively delineates the knowledge boundary, significantly decreasing the proportion of retrievals required for optimal end-to-end performance. Specifically, we evaluate the effectiveness of KBM in three complex scenarios: dynamic knowledge, long-tail static knowledge, and multi-hop problems, as well as its functionality as an external LLM plug-in.
Abstract:Question Answering (QA) systems face challenges in handling complex questions that require multi-domain knowledge synthesis. The naive RAG models, although effective in information retrieval, struggle with complex questions that require comprehensive and in-depth answers. The pioneering task is defined as explanatory answer generation, which entails handling identified challenges such as the requirement for comprehensive information and logical coherence within the generated context. To address these issues, we refer to systematic thinking theory and propose SynthRAG, an innovative framework designed to enhance QA performance. SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring, generating systematic information to ensure detailed coverage, and producing customized answers tailored to specific user inquiries. This structured approach guarantees logical coherence and thorough integration of information, yielding responses that are both insightful and methodically organized. Empirical evaluations underscore SynthRAG's effectiveness, demonstrating its superiority in handling complex questions, overcoming the limitations of naive RAG models, and significantly improving answer quality and depth. Furthermore, an online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement, with each response averaging 5.73 upvotes and surpassing the performance of 79.8% of human contributors, highlighting the practical relevance and impact of the proposed framework. Our code is available at https://github.com/czy1999/SynthRAG .