Abstract:This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models, with the aim of tackling the challenges of preference-aligned data annotation while reducing the reliance on medical experts. We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods and the difficulties in accurately representing physician preferences. To address these challenges, we present a new evaluation framework based on standardized patient examinations. This framework is designed to objectively assess the effectiveness of large language models (LLMs) in guiding users and following instructions, enabling a comprehensive comparison across different models. Furthermore, our investigation of effective ways to express physician preferences using Constitutional AI algorithms highlighted the particular effectiveness of flowcharts. Utilizing this finding, we introduce an innovative agent-based approach for annotating preference data. This approach autonomously creates medical dialogue flows tailored to the patient's condition, demonstrates strong generalization abilities, and reduces the need for expert involvement. Our results show that the agent-based approach outperforms existing RLAIF annotation methods in standardized patient examinations and surpasses current open source medical dialogue LLMs in various test scenarios.
Abstract:Event reasoning is a fundamental ability that underlies many applications. It requires event schema knowledge to perform global reasoning and needs to deal with the diversity of the inter-event relations and the reasoning paradigms. How well LLMs accomplish event reasoning on various relations and reasoning paradigms remains unknown. To mitigate this disparity, we comprehensively evaluate the abilities of event reasoning of LLMs. We introduce a novel benchmark EV2 for EValuation of EVent reasoning. EV2 consists of two levels of evaluation of schema and instance and is comprehensive in relations and reasoning paradigms. We conduct extensive experiments on EV2. We find that LLMs have abilities to accomplish event reasoning but their performances are far from satisfactory. We also notice the imbalance of event reasoning abilities in LLMs. Besides, LLMs have event schema knowledge, however, they're not aligned with humans on how to utilize the knowledge. Based on these findings, we introduce two methods to guide the LLMs to utilize the event schema knowledge. Both methods achieve improvements.
Abstract:Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications. However, current LLMs that learn from human or external model supervision are costly and may face performance ceilings as task complexity and diversity increase. To address this issue, self-evolution approaches that enable LLM to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing. This new training paradigm inspired by the human experiential learning process offers the potential to scale LLMs towards superintelligence. In this work, we present a comprehensive survey of self-evolution approaches in LLMs. We first propose a conceptual framework for self-evolution and outline the evolving process as iterative cycles composed of four phases: experience acquisition, experience refinement, updating, and evaluation. Second, we categorize the evolution objectives of LLMs and LLM-based agents; then, we summarize the literature and provide taxonomy and insights for each module. Lastly, we pinpoint existing challenges and propose future directions to improve self-evolution frameworks, equipping researchers with critical insights to fast-track the development of self-evolving LLMs.
Abstract:Events refer to specific occurrences, incidents, or happenings that take place under a particular background. Event reasoning aims to infer events according to certain relations and predict future events. The cutting-edge techniques for event reasoning play a crucial role in various natural language processing applications. Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities. However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks. This discrepancy arises from the absence of explicit modeling of events and the interconnections of them within their instruction data. Consequently, these models face challenges in comprehending event structures and semantics while struggling to bridge the gap between their interpretations and human understanding of events. Additionally, their limitations in grasping event relations lead to constrained event reasoning abilities to effectively deduce and incorporate pertinent event knowledge. In this paper, we propose Event-Oriented Instruction Tuning (EvIT) to train our LLM. Specifically, we first propose a novel structure named event quadruple which contains the structure and semantics of events and is complete in the event representation. We then design event-relation learning based on the structures. We encapsulate the learning into the instruction-tuning formulation to better stimulate the event reasoning capacity of our model. We design a heuristic unsupervised method to mine event quadruple from a large-scale corpus. At last, we finetune a Llama model on our Event-Oriented Instruction Tuning. We conduct extensive experiments on event reasoning tasks on several datasets. Automatic and human evaluations demonstrate EvIT achieves competitive performances on event reasoning.
Abstract:Multi-modal Event Reasoning (MMER) endeavors to endow machines with the ability to comprehend intricate event relations across diverse data modalities. MMER is fundamental and underlies a wide broad of applications. Despite extensive instruction fine-tuning, current multi-modal large language models still fall short in such ability. The disparity stems from that existing models are insufficient to capture underlying principles governing event evolution in various scenarios. In this paper, we introduce Multi-Modal Event Evolution Learning (MEEL) to enable the model to grasp the event evolution mechanism, yielding advanced MMER ability. Specifically, we commence with the design of event diversification to gather seed events from a rich spectrum of scenarios. Subsequently, we employ ChatGPT to generate evolving graphs for these seed events. We propose an instruction encapsulation process that formulates the evolving graphs into instruction-tuning data, aligning the comprehension of event reasoning to humans. Finally, we observe that models trained in this way are still struggling to fully comprehend event evolution. In such a case, we propose the guiding discrimination strategy, in which models are trained to discriminate the improper evolution direction. We collect and curate a benchmark M-EV2 for MMER. Extensive experiments on M-EV2 validate the effectiveness of our approach, showcasing competitive performance in open-source multi-modal LLMs.
Abstract:The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM's analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation that enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.
Abstract:The Multi-Modal Large Language Model (MLLM) refers to an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data. Spatial awareness stands as one of the crucial abilities of MLLM, encompassing diverse skills related to understanding spatial relationships among objects and between objects and the scene area. Industries such as autonomous driving, smart healthcare, robotics, virtual, and augmented reality heavily demand MLLM's spatial awareness capabilities. However, there exists a noticeable gap between the current spatial awareness capabilities of MLLM and the requirements set by human needs. To address this issue, this paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries. Specifically, for a particular multi-modal task, we utilize algorithms for acquiring geometric spatial information and scene graphs to obtain relevant geometric spatial information and scene details of objects involved in the query. Subsequently, based on this information, we direct MLLM to address spatial awareness-related queries posed by the user. Extensive experiments were conducted in benchmarks such as MME, MM-Vet, and other multi-modal large language models. The experimental results thoroughly confirm the efficacy of the proposed method in enhancing the spatial awareness tasks and associated tasks of MLLM.
Abstract:Events serve as fundamental units of occurrence within various contexts. The processing of event semantics in textual information forms the basis of numerous natural language processing (NLP) applications. Recent studies have begun leveraging large language models (LLMs) to address event semantic processing. However, the extent that LLMs can effectively tackle these challenges remains uncertain. Furthermore, the lack of a comprehensive evaluation framework for event semantic processing poses a significant challenge in evaluating these capabilities. In this paper, we propose an overarching framework for event semantic processing, encompassing understanding, reasoning, and prediction, along with their fine-grained aspects. To comprehensively evaluate the event semantic processing abilities of models, we introduce a novel benchmark called EVEVAL. We collect 8 datasets that cover all aspects of event semantic processing. Extensive experiments are conducted on EVEVAL, leading to several noteworthy findings based on the obtained results.