Abstract:Agents powered by large language models have shown remarkable reasoning and execution capabilities, attracting researchers to explore their potential in the recommendation domain. Previous studies have primarily focused on enhancing the capabilities of either recommendation agents or user agents independently, but have not considered the interaction and collaboration between recommendation agents and user agents. To address this gap, we propose a novel framework named FLOW, which achieves collaboration between the recommendation agent and the user agent by introducing a feedback loop. Specifically, the recommendation agent refines its understanding of the user's preferences by analyzing the user agent's feedback on previously suggested items, while the user agent leverages suggested items to uncover deeper insights into the user's latent interests. This iterative refinement process enhances the reasoning capabilities of both the recommendation agent and the user agent, enabling more precise recommendations and a more accurate simulation of user behavior. To demonstrate the effectiveness of the feedback loop, we evaluate both recommendation performance and user simulation performance on three widely used recommendation domain datasets. The experimental results indicate that the feedback loop can simultaneously improve the performance of both the recommendation and user agents.
Abstract:Large language models have seen widespread adoption in math problem-solving. However, in geometry problems that usually require visual aids for better understanding, even the most advanced multi-modal models currently still face challenges in effectively using image information. High-quality data is crucial for enhancing the geometric capabilities of multi-modal models, yet existing open-source datasets and related efforts are either too challenging for direct model learning or suffer from misalignment between text and images. To overcome this issue, we introduce a novel pipeline that leverages GPT-4 and GPT-4V to generate relatively basic geometry problems with aligned text and images, facilitating model learning. We have produced a dataset of 4.9K geometry problems and combined it with 19K open-source data to form our GeoGPT4V dataset. Experimental results demonstrate that the GeoGPT4V dataset significantly improves the geometry performance of various models on the MathVista and MathVision benchmarks. The code is available at https://github.com/Lanyu0303/GeoGPT4V_Project