Abstract:Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by surpassing the capabilities of chain-of-thought prompting, encouraging exploration of intermediate steps. However, such methods introduce significant inference latency due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SeeD, a novel and efficient inference framework to optimize runtime speed and GPU memory management concurrently. By employing a scheduled speculative execution, SeeD efficiently handles multiple iterations for the thought generation and the state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate superior speedup performance of SeeD, providing a viable path for batched inference in training-free speculative decoding.
Abstract:Implicit discourse relation recognition (IDRR) aims at recognizing the discourse relation between two text segments without an explicit connective. Recently, the prompt learning has just been applied to the IDRR task with great performance improvements over various neural network-based approaches. However, the discrete nature of the state-art-of-art prompting approach requires manual design of templates and answers, a big hurdle for its practical applications. In this paper, we propose a continuous version of prompt learning together with connective knowledge distillation, called AdaptPrompt, to reduce manual design efforts via continuous prompting while further improving performance via knowledge transfer. In particular, we design and train a few virtual tokens to form continuous templates and automatically select the most suitable one by gradient search in the embedding space. We also design an answer-relation mapping rule to generate a few virtual answers as the answer space. Furthermore, we notice the importance of annotated connectives in the training dataset and design a teacher-student architecture for knowledge transfer. Experiments on the up-to-date PDTB Corpus V3.0 validate our design objectives in terms of the better relation recognition performance over the state-of-the-art competitors.