Abstract:With the growing complexity of fact verification tasks, the concern with "thoughtful" reasoning capabilities is increasing. However, recent fact verification benchmarks mainly focus on checking a narrow scope of semantic factoids within claims and lack an explicit logical reasoning process. In this paper, we introduce CheckWhy, a challenging dataset tailored to a novel causal fact verification task: checking the truthfulness of the causal relation within claims through rigorous reasoning steps. CheckWhy consists of over 19K "why" claim-evidence-argument structure triplets with supports, refutes, and not enough info labels. Each argument structure is composed of connected evidence, representing the reasoning process that begins with foundational evidence and progresses toward claim establishment. Through extensive experiments on state-of-the-art models, we validate the importance of incorporating the argument structure for causal fact verification. Moreover, the automated and human evaluation of argument structure generation reveals the difficulty in producing satisfying argument structure by fine-tuned models or Chain-of-Thought prompted LLMs, leaving considerable room for future improvements.
Abstract:Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CRQ through alignment. However, they are designed for one specific retrieval system, which potentially results in poor generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries across diverse retrieval environments through a dual-phase training strategy. We also developed two effective approaches for acquiring superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental evaluations on the TopiOCQA and QReCC datasets demonstrate that AdaCQR significantly outperforms existing methods, offering both quantitative and qualitative improvements in conversational query reformulation.
Abstract:Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by surpassing the capabilities of chain-of-thought prompting, encouraging exploration of intermediate steps. However, such methods introduce significant inference latency due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SeeD, a novel and efficient inference framework to optimize runtime speed and GPU memory management concurrently. By employing a scheduled speculative execution, SeeD efficiently handles multiple iterations for the thought generation and the state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate superior speedup performance of SeeD, providing a viable path for batched inference in training-free speculative decoding.
Abstract:As more than 70$\%$ of reviews in the existing opinion summary data set are positive, current opinion summarization approaches are reluctant to generate negative summaries given the input of negative texts. To address such sentiment bias, a direct approach without the over-reliance on a specific framework is to generate additional data based on large language models to balance the emotional distribution of the dataset. However, data augmentation based on large language models faces two disadvantages: 1) the potential issues or toxicity in the augmented data; 2) the expensive costs. Therefore, in this paper, we propose a novel data augmentation framework based on both large and small language models for debiasing opinion summarization. In specific, a small size of synthesized negative reviews is obtained by rewriting the positive text via a large language model. Then, a disentangle reconstruction model is trained based on the generated data. After training, a large amount of synthetic data can be obtained by decoding the new representation obtained from the combination of different sample representations and filtering based on confusion degree and sentiment classification. Experiments have proved that our framework can effectively alleviate emotional bias same as using only large models, but more economically.
Abstract:Due to the sparsity of user data, sentiment analysis on user reviews in e-commerce platforms often suffers from poor performance, especially when faced with extremely sparse user data or long-tail labels. Recently, the emergence of LLMs has introduced new solutions to such problems by leveraging graph structures to generate supplementary user profiles. However, previous approaches have not fully utilized the graph understanding capabilities of LLMs and have struggled to adapt to complex streaming data environments. In this work, we propose a fine-grained streaming data synthesis framework that categorizes sparse users into three categories: Mid-tail, Long-tail, and Extreme. Specifically, we design LLMs to comprehensively understand three key graph elements in streaming data, including Local-global Graph Understanding, Second-Order Relationship Extraction, and Product Attribute Understanding, which enables the generation of high-quality synthetic data to effectively address sparsity across different categories. Experimental results on three real datasets demonstrate significant performance improvements, with synthesized data contributing to MSE reductions of 45.85%, 3.16%, and 62.21%, respectively.
Abstract:Conventional multi-hop fact verification models are prone to rely on spurious correlations from the annotation artifacts, leading to an obvious performance decline on unbiased datasets. Among the various debiasing works, the causal inference-based methods become popular by performing theoretically guaranteed debiasing such as casual intervention or counterfactual reasoning. However, existing causal inference-based debiasing methods, which mainly formulate fact verification as a single-hop reasoning task to tackle shallow bias patterns, cannot deal with the complicated bias patterns hidden in multiple hops of evidence. To address the challenge, we propose Causal Walk, a novel method for debiasing multi-hop fact verification from a causal perspective with front-door adjustment. Specifically, in the structural causal model, the reasoning path between the treatment (the input claim-evidence graph) and the outcome (the veracity label) is introduced as the mediator to block the confounder. With the front-door adjustment, the causal effect between the treatment and the outcome is decomposed into the causal effect between the treatment and the mediator, which is estimated by applying the idea of random walk, and the causal effect between the mediator and the outcome, which is estimated with normalized weighted geometric mean approximation. To investigate the effectiveness of the proposed method, an adversarial multi-hop fact verification dataset and a symmetric multi-hop fact verification dataset are proposed with the help of the large language model. Experimental results show that Causal Walk outperforms some previous debiasing methods on both existing datasets and the newly constructed datasets. Code and data will be released at https://github.com/zcccccz/CausalWalk.
Abstract:Despite the significant achievements of existing prompting methods such as in-context learning and chain-of-thought for large language models (LLMs), they still face challenges of various biases. Traditional debiasing methods primarily focus on the model training stage, including data augmentation-based and reweight-based approaches, with the limitations of addressing the complex biases of LLMs. To address such limitations, the causal relationship behind the prompting methods is uncovered using a structural causal model, and a novel causal prompting method based on front-door adjustment is proposed to effectively mitigate the bias of LLMs. In specific, causal intervention is implemented by designing the prompts without accessing the parameters and logits of LLMs.The chain-of-thoughts generated by LLMs are employed as the mediator variable and the causal effect between the input prompt and the output answers is calculated through front-door adjustment to mitigate model biases. Moreover, to obtain the representation of the samples precisely and estimate the causal effect more accurately, contrastive learning is used to fine-tune the encoder of the samples by aligning the space of the encoder with the LLM. Experimental results show that the proposed causal prompting approach achieves excellent performance on 3 natural language processing datasets on both open-source and closed-source LLMs.
Abstract:Though notable progress has been made, neural-based aspect-based sentiment analysis (ABSA) models are prone to learn spurious correlations from annotation biases, resulting in poor robustness on adversarial data transformations. Among the debiasing solutions, causal inference-based methods have attracted much research attention, which can be mainly categorized into causal intervention methods and counterfactual reasoning methods. However, most of the present debiasing methods focus on single-variable causal inference, which is not suitable for ABSA with two input variables (the target aspect and the review). In this paper, we propose a novel framework based on multi-variable causal inference for debiasing ABSA. In this framework, different types of biases are tackled based on different causal intervention methods. For the review branch, the bias is modeled as indirect confounding from context, where backdoor adjustment intervention is employed for debiasing. For the aspect branch, the bias is described as a direct correlation with labels, where counterfactual reasoning is adopted for debiasing. Extensive experiments demonstrate the effectiveness of the proposed method compared to various baselines on the two widely used real-world aspect robustness test set datasets.
Abstract:Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
Abstract:Computational experiments have emerged as a valuable method for studying complex systems, involving the algorithmization of counterfactuals. However, accurately representing real social systems in Agent-based Modeling (ABM) is challenging due to the diverse and intricate characteristics of humans, including bounded rationality and heterogeneity. To address this limitation, the integration of Large Language Models (LLMs) has been proposed, enabling agents to possess anthropomorphic abilities such as complex reasoning and autonomous learning. These agents, known as LLM-based Agent, offer the potential to enhance the anthropomorphism lacking in ABM. Nonetheless, the absence of explicit explainability in LLMs significantly hinders their application in the social sciences. Conversely, computational experiments excel in providing causal analysis of individual behaviors and complex phenomena. Thus, combining computational experiments with LLM-based Agent holds substantial research potential. This paper aims to present a comprehensive exploration of this fusion. Primarily, it outlines the historical development of agent structures and their evolution into artificial societies, emphasizing their importance in computational experiments. Then it elucidates the advantages that computational experiments and LLM-based Agents offer each other, considering the perspectives of LLM-based Agent for computational experiments and vice versa. Finally, this paper addresses the challenges and future trends in this research domain, offering guidance for subsequent related studies.