Abstract:Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.
Abstract:The development of Multi-modal Large Language Models (MLLMs) enhances Large Language Models (LLMs) with the ability to perceive data formats beyond text, significantly advancing a range of downstream applications, such as visual question answering and image captioning. However, the substantial computational costs associated with processing high-resolution images and videos pose a barrier to their broader adoption. To address this challenge, compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs. While existing methods conduct token reduction in the feature alignment phase. In this paper, we introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments without the need for segmentation masks. Specifically, we concatenate semantic tokens to represent image semantic segments after the linear projection layer before feeding into the vision encoder. Besides, with the isolated attention we adopt, VisToG can identify and eliminate redundant visual tokens utilizing the prior knowledge in the pre-trained vision encoder, which effectively reduces computational demands. Extensive experiments demonstrate the effectiveness of VisToG, maintaining 98.1% of the original performance while achieving a reduction of over 27\% inference time.
Abstract:In the online digital world, users frequently engage with diverse items across multiple domains (e.g., e-commerce platforms, streaming services, and social media networks), forming complex heterogeneous interaction graphs. Leveraging this multi-domain information can undoubtedly enhance the performance of recommendation systems by providing more comprehensive user insights and alleviating data sparsity in individual domains. However, integrating multi-domain knowledge for the cross-domain recommendation is very hard due to inherent disparities in user behavior and item characteristics and the risk of negative transfer, where irrelevant or conflicting information from the source domains adversely impacts the target domain's performance. To address these challenges, we offer HAGO, a novel framework with $\textbf{H}$eterogeneous $\textbf{A}$daptive $\textbf{G}$raph co$\textbf{O}$rdinators, which dynamically integrate multi-domain graphs into a cohesive structure by adaptively adjusting the connections between coordinators and multi-domain graph nodes, thereby enhancing beneficial inter-domain interactions while mitigating negative transfer effects. Additionally, we develop a universal multi-domain graph pre-training strategy alongside HAGO to collaboratively learn high-quality node representations across domains. To effectively transfer the learned multi-domain knowledge to the target domain, we design an effective graph prompting method, which incorporates pre-trained embeddings with learnable prompts for the recommendation task. Our framework is compatible with various graph-based models and pre-training techniques, demonstrating broad applicability and effectiveness. Further experimental results show that our solutions outperform state-of-the-art methods in multi-domain recommendation scenarios and highlight their potential for real-world applications.
Abstract:Autonomous driving necessitates advanced object detection techniques that integrate information from multiple modalities to overcome the limitations associated with single-modal approaches. The challenges of aligning diverse data in early fusion and the complexities, along with overfitting issues introduced by deep fusion, underscore the efficacy of late fusion at the decision level. Late fusion ensures seamless integration without altering the original detector's network structure. This paper introduces a pioneering Multi-modal Multi-class Late Fusion method, designed for late fusion to enable multi-class detection. Fusion experiments conducted on the KITTI validation and official test datasets illustrate substantial performance improvements, presenting our model as a versatile solution for multi-modal object detection in autonomous driving. Moreover, our approach incorporates uncertainty analysis into the classification fusion process, rendering our model more transparent and trustworthy and providing more reliable insights into category predictions.
Abstract:In recent years, graph prompting has emerged as a promising research direction, enabling the learning of additional tokens or subgraphs appended to the original graphs without requiring retraining of pre-trained graph models across various applications. This novel paradigm, shifting from the traditional pretraining and finetuning to pretraining and prompting has shown significant empirical success in simulating graph data operations, with applications ranging from recommendation systems to biological networks and graph transferring. However, despite its potential, the theoretical underpinnings of graph prompting remain underexplored, raising critical questions about its fundamental effectiveness. The lack of rigorous theoretical proof of why and how much it works is more like a dark cloud over the graph prompt area to go further. To fill this gap, this paper introduces a theoretical framework that rigorously analyzes graph prompting from a data operation perspective. Our contributions are threefold: First, we provide a formal guarantee theorem, demonstrating graph prompts capacity to approximate graph transformation operators, effectively linking upstream and downstream tasks. Second, we derive upper bounds on the error of these data operations by graph prompts for a single graph and extend this discussion to batches of graphs, which are common in graph model training. Third, we analyze the distribution of data operation errors, extending our theoretical findings from linear graph models (e.g., GCN) to non-linear graph models (e.g., GAT). Extensive experiments support our theoretical results and confirm the practical implications of these guarantees.
Abstract:Large Language Models (LLMs) have greatly contributed to the development of adaptive intelligent agents and are positioned as an important way to achieve Artificial General Intelligence (AGI). However, LLMs are prone to produce factually incorrect information and often produce "phantom" content that undermines their reliability, which poses a serious challenge for their deployment in real-world scenarios. Enhancing LLMs by combining external databases and information retrieval mechanisms is an effective path. To address the above challenges, we propose a new approach called WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system. First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval. WeKnow-RAG then utilizes domain-specific knowledge graphs to satisfy a variety of queries and domains, thereby improving performance on factual information and complex reasoning tasks by employing multi-stage web page retrieval techniques using both sparse and dense retrieval methods. Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process. Finally, we also integrate a self-assessment mechanism for the LLM to evaluate the trustworthiness of the answers it generates. Our approach proves its outstanding effectiveness in a wide range of offline experiments and online submissions.
Abstract:Detecting objects seamlessly blended into their surroundings represents a complex task for both human cognitive capabilities and advanced artificial intelligence algorithms. Currently, the majority of methodologies for detecting camouflaged objects mainly focus on utilizing discriminative models with various unique designs. However, it has been observed that generative models, such as Stable Diffusion, possess stronger capabilities for understanding various objects in complex environments; Yet their potential for the cognition and detection of camouflaged objects has not been extensively explored. In this study, we present a novel denoising diffusion model, namely FocusDiffuser, to investigate how generative models can enhance the detection and interpretation of camouflaged objects. We believe that the secret to spotting camouflaged objects lies in catching the subtle nuances in details. Consequently, our FocusDiffuser innovatively integrates specialized enhancements, notably the Boundary-Driven LookUp (BDLU) module and Cyclic Positioning (CP) module, to elevate standard diffusion models, significantly boosting the detail-oriented analytical capabilities. Our experiments demonstrate that FocusDiffuser, from a generative perspective, effectively addresses the challenge of camouflaged object detection, surpassing leading models on benchmarks like CAMO, COD10K and NC4K.
Abstract:Individual personalities significantly influence our perceptions, decisions, and social interactions, which is particularly crucial for gaining insights into human behavior patterns in online social network analysis. Many psychological studies have observed that personalities are strongly reflected in their social behaviors and social environments. In light of these problems, this paper proposes a sociological analysis framework for one's personality in an environment-based view instead of individual-level data mining. Specifically, to comprehensively understand an individual's behavior from low-quality records, we leverage the powerful associative ability of LLMs by designing an effective prompt. In this way, LLMs can integrate various scattered information with their external knowledge to generate higher-quality profiles, which can significantly improve the personality analysis performance. To explore the interactive mechanism behind the users and their online environments, we design an effective hypergraph neural network where the hypergraph nodes are users and the hyperedges in the hypergraph are social environments. We offer a useful dataset with user profile data, personality traits, and several detected environments from the real-world social platform. To the best of our knowledge, this is the first network-based dataset containing both hypergraph structure and social information, which could push forward future research in this area further. By employing the framework on this dataset, we can effectively capture the nuances of individual personalities and their online behaviors, leading to a deeper understanding of human interactions in the digital world.
Abstract:Artificial general intelligence on graphs has shown significant advancements across various applications, yet the traditional 'Pre-train & Fine-tune' paradigm faces inefficiencies and negative transfer issues, particularly in complex and few-shot settings. Graph prompt learning emerges as a promising alternative, leveraging lightweight prompts to manipulate data and fill the task gap by reformulating downstream tasks to the pretext. However, several critical challenges still remain: how to unify diverse graph prompt models, how to evaluate the quality of graph prompts, and to improve their usability for practical comparisons and selection. In response to these challenges, we introduce the first comprehensive benchmark for graph prompt learning. Our benchmark integrates SIX pre-training methods and FIVE state-of-the-art graph prompt techniques, evaluated across FIFTEEN diverse datasets to assess performance, flexibility, and efficiency. We also present 'ProG', an easy-to-use open-source library that streamlines the execution of various graph prompt models, facilitating objective evaluations. Additionally, we propose a unified framework that categorizes existing graph prompt methods into two main approaches: prompts as graphs and prompts as tokens. This framework enhances the applicability and comparison of graph prompt techniques. The code is available at: https://github.com/sheldonresearch/ProG.
Abstract:Supervised and self-supervised learning are two main training paradigms for skeleton-based human action recognition. However, the former one-hot classification requires labor-intensive predefined action categories annotations, while the latter involves skeleton transformations (e.g., cropping) in the pretext tasks that may impair the skeleton structure. To address these challenges, we introduce a novel skeleton-based training framework (C$^2$VL) based on Cross-modal Contrastive learning that uses the progressive distillation to learn task-agnostic human skeleton action representation from the Vision-Language knowledge prompts. Specifically, we establish the vision-language action concept space through vision-language knowledge prompts generated by pre-trained large multimodal models (LMMs), which enrich the fine-grained details that the skeleton action space lacks. Moreover, we propose the intra-modal self-similarity and inter-modal cross-consistency softened targets in the cross-modal contrastive process to progressively control and guide the degree of pulling vision-language knowledge prompts and corresponding skeletons closer. These soft instance discrimination and self-knowledge distillation strategies contribute to the learning of better skeleton-based action representations from the noisy skeleton-vision-language pairs. During the inference phase, our method requires only the skeleton data as the input for action recognition and no longer for vision-language prompts. Extensive experiments show that our method achieves state-of-the-art results on NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets. The code will be available in the future.