Abstract:Available studies on chronic lower back pain (cLBP) typically focus on one or a few specific tissues rather than conducting a comprehensive layer-by-layer analysis. Since three-dimensional (3-D) images often contain hundreds of slices, manual annotation of these anatomical structures is both time-consuming and error-prone. We aim to develop and validate a novel approach called InterSliceBoost to enable the training of a segmentation model on a partially annotated dataset without compromising segmentation performance. The architecture of InterSliceBoost includes two components: an inter-slice generator and a segmentation model. The generator utilizes residual block-based encoders to extract features from adjacent image-mask pairs (IMPs). Differential features are calculated and input into a decoder to generate inter-slice IMPs. The segmentation model is trained on partially annotated datasets (e.g., skipping 1, 2, 3, or 7 images) and the generated inter-slice IMPs. To validate the performance of InterSliceBoost, we utilized a dataset of 76 B-mode ultrasound scans acquired on 29 subjects enrolled in an ongoing cLBP study. InterSliceBoost, trained on only 33% of the image slices, achieved a mean Dice coefficient of 80.84% across all six layers on the independent test set, with Dice coefficients of 73.48%, 61.11%, 81.87%, 95.74%, 83.52% and 88.74% for segmenting dermis, superficial fat, superficial fascial membrane, deep fat, deep fascial membrane, and muscle. This performance is significantly higher than the conventional model trained on fully annotated images (p<0.05). InterSliceBoost can effectively segment the six tissue layers depicted on 3-D B-model ultrasound images in settings with partial annotations.
Abstract:3D ultrasound delivers high-resolution, real-time images of soft tissues, which is essential for pain research. However, manually distinguishing various tissues for quantitative analysis is labor-intensive. To streamline this process, we developed and validated GRN+, a novel multi-model framework that automates layer segmentation with minimal annotated data. GRN+ combines a ResNet-based generator and a U-Net segmentation model. Through a method called Segmentation-guided Enhancement (SGE), the generator produces new images and matching masks under the guidance of the segmentation model, with its weights adjusted according to the segmentation loss gradient. To prevent gradient explosion and secure stable training, a two-stage backpropagation strategy was implemented: the first stage propagates the segmentation loss through both the generator and segmentation model, while the second stage concentrates on optimizing the segmentation model alone, thereby refining mask prediction using the generated images. Tested on 69 fully annotated 3D ultrasound scans from 29 subjects with six manually labeled tissue layers, GRN+ outperformed all other semi-supervised methods in terms of the Dice coefficient using only 5% labeled data, despite not using unlabeled data for unsupervised training. Additionally, when applied to fully annotated datasets, GRN+ with SGE achieved a 2.16% higher Dice coefficient while incurring lower computational costs compared to other models. Overall, GRN+ provides accurate tissue segmentation while reducing both computational expenses and the dependency on extensive annotations, making it an effective tool for 3D ultrasound analysis in cLBP patients.
Abstract:Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
Abstract:Large language models have become a powerful method for feature augmentation in recommendation systems. However, existing approaches relying on quick inference often suffer from incomplete feature coverage and insufficient specificity in feature descriptions, limiting their ability to capture fine-grained user preferences and undermining overall performance. Motivated by the recent success of inference scaling in math and coding tasks, we explore whether scaling inference can address these limitations and enhance feature quality. Our experiments show that scaling inference leads to significant improvements in recommendation performance, with a 12% increase in NDCG@10. The gains can be attributed to two key factors: feature quantity and specificity. In particular, models using extended Chain-of-Thought (CoT) reasoning generate a greater number of detailed and precise features, offering deeper insights into user preferences and overcoming the limitations of quick inference. We further investigate the factors influencing feature quantity, revealing that model choice and search strategy play critical roles in generating a richer and more diverse feature set. This is the first work to apply inference scaling to feature augmentation in recommendation systems, bridging advances in reasoning tasks to enhance personalized recommendation.
Abstract:The in-context learning (ICL) capability of large language models (LLMs) enables them to perform challenging tasks using provided demonstrations. However, ICL is highly sensitive to the ordering of demonstrations, leading to instability in predictions. This paper shows that this vulnerability can be exploited to design a natural attack - difficult for model providers to detect - that achieves nearly 80% success rate on LLaMA-3 by simply permuting the demonstrations. Existing mitigation methods primarily rely on post-processing and fail to enhance the model's inherent robustness to input permutations, raising concerns about safety and reliability of LLMs. To address this issue, we propose Permutation-resilient learning (PEARL), a novel framework based on distributionally robust optimization (DRO), which optimizes model performance against the worst-case input permutation. Specifically, PEARL consists of a permutation-proposal network (P-Net) and the LLM. The P-Net generates the most challenging permutations by treating it as an optimal transport problem, which is solved using an entropy-constrained Sinkhorn algorithm. Through minimax optimization, the P-Net and the LLM iteratively optimize against each other, progressively improving the LLM's robustness. Experiments on synthetic pre-training and real-world instruction tuning tasks demonstrate that PEARL effectively mitigates permutation attacks and enhances performance. Notably, despite being trained on fewer shots and shorter contexts, PEARL achieves performance gains of up to 40% when scaled to many-shot and long-context scenarios, highlighting its efficiency and generalization capabilities.
Abstract:We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
Abstract:Abstract Background: Pulmonary function tests (PFTs) and computed tomography (CT) imaging are vital in diagnosing, managing, and monitoring lung diseases. A common issue in practice is the lack of access to recorded pulmonary functions despite available chest CT scans. Purpose: To develop and validate a deep learning algorithm for predicting pulmonary function directly from chest CT scans. Methods: The development cohort came from the Pittsburgh Lung Screening Study (PLuSS) (n=3619). The validation cohort came from the Specialized Centers of Clinically Oriented Research (SCCOR) in COPD (n=662). A deep learning model called BeyondCT, combining a three-dimensional (3D) convolutional neural network (CNN) and Vision Transformer (ViT) architecture, was used to predict forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) from non-contrasted inspiratory chest CT scans. A 3D CNN model without ViT was used for comparison. Subject demographics (age, gender, smoking status) were also incorporated into the model. Performance was compared to actual PFTs using mean absolute error (MAE, L), percentage error, and R square. Results: The 3D-CNN model achieved MAEs of 0.395 L and 0.383 L, percentage errors of 13.84% and 18.85%, and R square of 0.665 and 0.679 for FVC and FEV1, respectively. The BeyondCT model without demographics had MAEs of 0.362 L and 0.371 L, percentage errors of 10.89% and 14.96%, and R square of 0.719 and 0.727, respectively. Including demographics improved performance (p<0.05), with MAEs of 0.356 L and 0.353 L, percentage errors of 10.79% and 14.82%, and R square of 0.77 and 0.739 for FVC and FEV1 in the test set. Conclusion: The BeyondCT model showed robust performance in predicting lung function from non-contrast inspiratory chest CT scans.
Abstract:The emergence of large language models (LLMs) has revolutionized the capabilities of text comprehension and generation. Multi-modal generation attracts great attention from both the industry and academia, but there is little work on personalized generation, which has important applications such as recommender systems. This paper proposes the first method for personalized multimodal generation using LLMs, showcases its applications and validates its performance via an extensive experimental study on two datasets. The proposed method, Personalized Multimodal Generation (PMG for short) first converts user behaviors (e.g., clicks in recommender systems or conversations with a virtual assistant) into natural language to facilitate LLM understanding and extract user preference descriptions. Such user preferences are then fed into a generator, such as a multimodal LLM or diffusion model, to produce personalized content. To capture user preferences comprehensively and accurately, we propose to let the LLM output a combination of explicit keywords and implicit embeddings to represent user preferences. Then the combination of keywords and embeddings are used as prompts to condition the generator. We optimize a weighted sum of the accuracy and preference scores so that the generated content has a good balance between them. Compared to a baseline method without personalization, PMG has a significant improvement on personalization for up to 8% in terms of LPIPS while retaining the accuracy of generation.
Abstract:This study focuses on media bias detection, crucial in today's era of influential social media platforms shaping individual attitudes and opinions. In contrast to prior work that primarily relies on training specific models tailored to particular datasets, resulting in limited adaptability and subpar performance on out-of-domain data, we introduce a general bias detection framework, IndiVec, built upon large language models. IndiVec begins by constructing a fine-grained media bias database, leveraging the robust instruction-following capabilities of large language models and vector database techniques. When confronted with new input for bias detection, our framework automatically selects the most relevant indicator from the vector database and employs majority voting to determine the input's bias label. IndiVec excels compared to previous methods due to its adaptability (demonstrating consistent performance across diverse datasets from various sources) and explainability (providing explicit top-k indicators to interpret bias predictions). Experimental results on four political bias datasets highlight IndiVec's significant superiority over baselines. Furthermore, additional experiments and analysis provide profound insights into the framework's effectiveness.
Abstract:The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named AutoAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, AutoAlign constructs a predicate-proximity-graph with the help of large language models to automatically capture the similarity between predicates across two KGs. For entity embeddings, AutoAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. AutoAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that AutoAlign improves the performance of entity alignment significantly compared to state-of-the-art methods.