Abstract:Large language models (LLMs), with advanced linguistic capabilities, have been employed in reranking tasks through a sequence-to-sequence approach. In this paradigm, multiple passages are reranked in a listwise manner and a textual reranked permutation is generated. However, due to the limited context window of LLMs, this reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets. This not only increases computational costs but also restricts the LLM from fully capturing all the comparison information for all candidates. To address these challenges, we propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking. To achieve it, we first propose the relevance-aware listwise reranking framework, which incorporates explicit list-view relevance scores to improve reranking efficiency and enable global comparison across the entire candidate set. Second, to ensure the comparability of the computed scores, we propose self-calibrated training that uses point-view relevance assessments generated internally by the LLM itself to calibrate the list-view relevance assessments. Extensive experiments and comprehensive analysis on the BEIR benchmark and TREC Deep Learning Tracks demonstrate the effectiveness and efficiency of our proposed method.
Abstract:Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT.
Abstract:Frequently updating Large Language Model (LLM)-based recommender systems to adapt to new user interests -- as done for traditional ones -- is impractical due to high training costs, even with acceleration methods. This work explores adapting to dynamic user interests without any model updates by leveraging In-Context Learning (ICL), which allows LLMs to learn new tasks from few-shot examples provided in the input. Using new-interest examples as the ICL few-shot examples, LLMs may learn real-time interest directly, avoiding the need for model updates. However, existing LLM-based recommenders often lose the in-context learning ability during recommendation tuning, while the original LLM's in-context learning lacks recommendation-specific focus. To address this, we propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations. RecICL organizes training examples in an in-context learning format, ensuring that in-context learning ability is preserved and aligned with the recommendation task during tuning. Extensive experiments demonstrate RecICL's effectiveness in delivering real-time recommendations without requiring model updates. Our code is available at https://github.com/ym689/rec_icl.
Abstract:Large Vision-Language Models (LVLMs) have achieved remarkable performance in many vision-language tasks, yet their capabilities in fine-grained visual understanding remain insufficiently evaluated. Existing benchmarks either contain limited fine-grained evaluation samples that are mixed with other data, or are confined to object-level assessments in natural images. To holistically assess LVLMs' fine-grained visual understanding capabilities, we propose using document images with multi-granularity and multi-modal information to supplement natural images. In this light, we construct MMDocBench, a benchmark with various OCR-free document understanding tasks for the evaluation of fine-grained visual perception and reasoning abilities. MMDocBench defines 15 main tasks with 4,338 QA pairs and 11,353 supporting regions, covering various document images such as research papers, receipts, financial reports, Wikipedia tables, charts, and infographics. Based on MMDocBench, we conduct extensive experiments using 13 open-source and 3 proprietary advanced LVLMs, assessing their strengths and weaknesses across different tasks and document image types. The benchmark, task instructions, and evaluation code will be made publicly available.
Abstract:Web agents have emerged as a promising direction to automate Web task completion based on user instructions, significantly enhancing user experience. Recently, Web agents have evolved from traditional agents to Large Language Models (LLMs)-based Web agents. Despite their success, existing LLM-based Web agents overlook the importance of personalized data (e.g., user profiles and historical Web behaviors) in assisting the understanding of users' personalized instructions and executing customized actions. To overcome the limitation, we first formulate the task of LLM-empowered personalized Web agents, which integrate personalized data and user instructions to personalize instruction comprehension and action execution. To address the absence of a comprehensive evaluation benchmark, we construct a Personalized Web Agent Benchmark (PersonalWAB), featuring user instructions, personalized user data, Web functions, and two evaluation paradigms across three personalized Web tasks. Moreover, we propose a Personalized User Memory-enhanced Alignment (PUMA) framework to adapt LLMs to the personalized Web agent task. PUMA utilizes a memory bank with a task-specific retrieval strategy to filter relevant historical Web behaviors. Based on the behaviors, PUMA then aligns LLMs for personalized action execution through fine-tuning and direct preference optimization. Extensive experiments validate the superiority of PUMA over existing Web agents on PersonalWAB.
Abstract:Personalized content filtering, such as recommender systems, has become a critical infrastructure to alleviate information overload. However, these systems merely filter existing content and are constrained by its limited diversity, making it difficult to meet users' varied content needs. To address this limitation, personalized content generation has emerged as a promising direction with broad applications. Nevertheless, most existing research focuses on personalized text generation, with relatively little attention given to personalized image generation. The limited work in personalized image generation faces challenges in accurately capturing users' visual preferences and needs from noisy user-interacted images and complex multimodal instructions. Worse still, there is a lack of supervised data for training personalized image generation models. To overcome the challenges, we propose a Personalized Image Generation Framework named Pigeon, which adopts exceptional large multimodal models with three dedicated modules to capture users' visual preferences and needs from noisy user history and multimodal instructions. To alleviate the data scarcity, we introduce a two-stage preference alignment scheme, comprising masked preference reconstruction and pairwise preference alignment, to align Pigeon with the personalized image generation task. We apply Pigeon to personalized sticker and movie poster generation, where extensive quantitative results and human evaluation highlight its superiority over various generative baselines.
Abstract:Federated learning (FL) is a promising machine learning paradigm that collaborates with client models to capture global knowledge. However, deploying FL models in real-world scenarios remains unreliable due to the coexistence of in-distribution data and unexpected out-of-distribution (OOD) data, such as covariate-shift and semantic-shift data. Current FL researches typically address either covariate-shift data through OOD generalization or semantic-shift data via OOD detection, overlooking the simultaneous occurrence of various OOD shifts. In this work, we propose FOOGD, a method that estimates the probability density of each client and obtains reliable global distribution as guidance for the subsequent FL process. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions without prior constraints, and detects semantic-shift data powerfully. Then SAG in FOOGD provides invariant yet diverse knowledge for both local covariate-shift generalization and client performance generalization. In empirical validations, FOOGD significantly enjoys three main advantages: (1) reliably estimating non-normalized decentralized distributions, (2) detecting semantic shift data via score values, and (3) generalizing to covariate-shift data by regularizing feature extractor. The prejoct is open in https://github.com/XeniaLLL/FOOGD-main.git.
Abstract:Large Language Model (LLM)-based generative recommendation has achieved notable success, yet its practical deployment is costly particularly due to excessive inference latency caused by autoregressive decoding. For lossless LLM decoding acceleration, Speculative Decoding (SD) has emerged as a promising solution. However, applying SD to generative recommendation presents unique challenges due to the requirement of generating top-K items (i.e., K distinct token sequences) as a recommendation list by beam search. This leads to more stringent verification in SD, where all the top-K sequences from the target LLM must be successfully drafted by the draft model at each decoding step. To alleviate this, we consider 1) boosting top-K sequence alignment between the draft model and the target LLM, and 2) relaxing the verification strategy to reduce trivial LLM calls. To this end, we propose an alignment framework named AtSpeed, which presents the AtSpeed-S optimization objective for top-K alignment under the strict top-K verification. Moreover, we introduce a relaxed sampling verification strategy that allows high-probability non-top-K drafted sequences to be accepted, significantly reducing LLM calls. Correspondingly, we propose AtSpeed-R for top-K alignment under this relaxed sampling verification. Empirical results on two real-world datasets demonstrate that AtSpeed significantly accelerates LLM-based generative recommendation, e.g., near 2x speedup under strict top-K verification and up to 2.5 speedup under relaxed sampling verification. The codes and datasets will be released in the near future.
Abstract:The conventional reconfigurable intelligent surface (RIS) assisted far-field communication systems can only implement angle beamforming, which actually limits the capability for reconfiguring the wireless propagation environment. To overcome this limitation, this paper proposes a newly designed frequency diverse RIS (FD-RIS), which can achieve joint distance-angle beamforming with the assistance of the time modulation technology. The signal processing model for FD-RIS-aided wireless communications is first derived. Then, an optimization problem aimed at maximizing the achievable rate is formulated where the frequency-time modulations are jointly optimized to achieve distance-angle beamforming. Furthermore, a novel iterative algorithm based on the cross-entropy optimization (CEO) framework is proposed to effectively handle the non-convex optimization problem. The numerical results validate that the proposed FD-RIS assisted communication scheme can achieve a notable performance improvement compared with the baseline scheme utilizing traditional RIS. In addition, the effectiveness of the proposed CEO algorithm is further verified by comparing with the benchmark using the genetic algorithm (GA).
Abstract:Recommending items solely catering to users' historical interests narrows users' horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with users' interests evolution, detrimentally affecting target users' experience. To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users' interest by utilizing the influence of social neighbors, i.e., indirect steering by adjusting the exposure of a target item to target users' neighbors. The key to PRSN lies in answering an interventional question: what would a target user's feedback be on a target item if the item is exposed to the user's different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item's exposure to the user's neighbors; and (2) adjusting the exposure of a target item to target users' neighbors to trade off steering performance and the damage to the neighbors' experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two key modules: (1)an interference representation-based estimation module for modeling potential feedback; and (2) a post-learning-based optimization module for optimizing a target item's exposure to trade off steering performance and the neighbors' experience by greedy search. We conduct extensive semi-simulation experiments based on three real-world datasets, validating the steering effectiveness of NIRec.