Abstract:We consider the linear causal representation learning setting where we observe a linear mixing of $d$ unknown latent factors, which follow a linear structural causal model. Recent work has shown that it is possible to recover the latent factors as well as the underlying structural causal model over them, up to permutation and scaling, provided that we have at least $d$ environments, each of which corresponds to perfect interventions on a single latent node (factor). After this powerful result, a key open problem faced by the community has been to relax these conditions: allow for coarser than perfect single-node interventions, and allow for fewer than $d$ of them, since the number of latent factors $d$ could be very large. In this work, we consider precisely such a setting, where we allow a smaller than $d$ number of environments, and also allow for very coarse interventions that can very coarsely \textit{change the entire causal graph over the latent factors}. On the flip side, we relax what we wish to extract to simply the \textit{list of nodes that have shifted between one or more environments}. We provide a surprising identifiability result that it is indeed possible, under some very mild standard assumptions, to identify the set of shifted nodes. Our identifiability proof moreover is a constructive one: we explicitly provide necessary and sufficient conditions for a node to be a shifted node, and show that we can check these conditions given observed data. Our algorithm lends itself very naturally to the sample setting where instead of just interventional distributions, we are provided datasets of samples from each of these distributions. We corroborate our results on both synthetic experiments as well as an interesting psychometric dataset. The code can be found at https://github.com/TianyuCodings/iLCS.
Abstract:Neural posterior estimation (NPE), a simulation-based computational approach for Bayesian inference, has shown great success in situations where posteriors are intractable or likelihood functions are treated as "black boxes." Existing NPE methods typically rely on normalizing flows, which transform a base distributions into a complex posterior by composing many simple, invertible transformations. But flow-based models, while state of the art for NPE, are known to suffer from several limitations, including training instability and sharp trade-offs between representational power and computational cost. In this work, we demonstrate the effectiveness of conditional diffusions as an alternative to normalizing flows for NPE. Conditional diffusions address many of the challenges faced by flow-based methods. Our results show that, across a highly varied suite of benchmarking problems for NPE architectures, diffusions offer improved stability, superior accuracy, and faster training times, even with simpler, shallower models. These gains persist across a variety of different encoder or "summary network" architectures, as well as in situations where no summary network is required. The code will be publicly available at \url{https://github.com/TianyuCodings/cDiff}.
Abstract:Ensuring correctness is crucial for code generation. Formal verification offers a definitive assurance of correctness, but demands substantial human effort in proof construction and hence raises a pressing need for automation. The primary obstacle lies in the severe lack of data - there is much less proof than code for LLMs to train upon. In this paper, we introduce SAFE, a novel framework that overcomes the lack of human-written proof to enable automated proof generation of Rust code. SAFE establishes a self-evolving cycle where data synthesis and fine-tuning collaborate to enhance the model capability, leveraging the definitive power of a symbolic verifier in telling correct proof from incorrect ones. SAFE also re-purposes the large number of synthesized incorrect proofs to train the self-debugging capability of the fine-tuned models, empowering them to fix incorrect proofs based on the verifier's feedback. SAFE demonstrates superior efficiency and precision compared to GPT-4o. Through tens of thousands of synthesized proofs and the self-debugging mechanism, we improve the capability of open-source models, initially unacquainted with formal verification, to automatically write proof for Rust code. This advancement leads to a significant improvement in performance, achieving a 70.50% accuracy rate in a benchmark crafted by human experts, a significant leap over GPT-4o's performance of 24.46%.
Abstract:In this paper we present the results of the AI-Debater 2023 Challenge held by the Chinese Conference on Affect Computing (CCAC 2023), and introduce the related datasets. We organize two tracks to handle the argumentative generation tasks in different scenarios, namely, Counter-Argument Generation (Track 1) and Claim-based Argument Generation (Track 2). Each track is equipped with its distinct dataset and baseline model respectively. In total, 32 competing teams register for the challenge, from which we received 11 successful submissions. In this paper, we will present the results of the challenge and a summary of the systems, highlighting commonalities and innovations among participating systems. Datasets and baseline models of the AI-Debater 2023 Challenge have been already released and can be accessed through the official website of the challenge.
Abstract:Offline reinforcement learning (RL) leverages pre-collected datasets to train optimal policies. Diffusion Q-Learning (DQL), introducing diffusion models as a powerful and expressive policy class, significantly boosts the performance of offline RL. However, its reliance on iterative denoising sampling to generate actions slows down both training and inference. While several recent attempts have tried to accelerate diffusion-QL, the improvement in training and/or inference speed often results in degraded performance. In this paper, we introduce a dual policy approach, Diffusion Trusted Q-Learning (DTQL), which comprises a diffusion policy for pure behavior cloning and a practical one-step policy. We bridge the two polices by a newly introduced diffusion trust region loss. The diffusion policy maintains expressiveness, while the trust region loss directs the one-step policy to explore freely and seek modes within the region defined by the diffusion policy. DTQL eliminates the need for iterative denoising sampling during both training and inference, making it remarkably computationally efficient. We evaluate its effectiveness and algorithmic characteristics against popular Kullback-Leibler (KL) based distillation methods in 2D bandit scenarios and gym tasks. We then show that DTQL could not only outperform other methods on the majority of the D4RL benchmark tasks but also demonstrate efficiency in training and inference speeds. The PyTorch implementation is available at https://github.com/TianyuCodings/Diffusion_Trusted_Q_Learning.
Abstract:In this paper, we extend financial sentiment analysis~(FSA) to event-level since events usually serve as the subject of the sentiment in financial text. Though extracting events from the financial text may be conducive to accurate sentiment predictions, it has specialized challenges due to the lengthy and discontinuity of events in a financial text. To this end, we reconceptualize the event extraction as a classification task by designing a categorization comprising coarse-grained and fine-grained event categories. Under this setting, we formulate the \textbf{E}vent-Level \textbf{F}inancial \textbf{S}entiment \textbf{A}nalysis~(\textbf{EFSA} for short) task that outputs quintuples consisting of (company, industry, coarse-grained event, fine-grained event, sentiment) from financial text. A large-scale Chinese dataset containing $12,160$ news articles and $13,725$ quintuples is publicized as a brand new testbed for our task. A four-hop Chain-of-Thought LLM-based approach is devised for this task. Systematically investigations are conducted on our dataset, and the empirical results demonstrate the benchmarking scores of existing methods and our proposed method can reach the current state-of-the-art. Our dataset and framework implementation are available at https://anonymous.4open.science/r/EFSA-645E
Abstract:Foundation models have revolutionized knowledge acquisition across domains, and our study introduces OmniArch, a paradigm-shifting approach designed for building foundation models in multi-physics scientific computing. OmniArch's pre-training involves a versatile pipeline that processes multi-physics spatio-temporal data, casting forward problem learning into scalable auto-regressive tasks, while our novel Physics-Informed Reinforcement Learning (PIRL) technique during fine-tuning ensures alignment with physical laws. Pre-trained on the comprehensive PDEBench dataset, OmniArch not only sets new performance benchmarks for 1D, 2D and 3D PDEs but also demonstrates exceptional adaptability to new physics via few-shot and zero-shot learning approaches. The model's representations further extend to inverse problem-solving, highlighting the transformative potential of AI-enabled Scientific Computing(AI4SC) foundation models for engineering applications and physics discovery.
Abstract:A multitude of toxic online behaviors, ranging from network attacks to anonymous traffic and spam, have severely disrupted the smooth operation of networks. Due to the inherent sender-receiver nature of network behaviors, graph-based frameworks are commonly used for detecting anomalous behaviors. However, in real-world scenarios, the boundary between normal and anomalous behaviors tends to be ambiguous. The local heterophily of graphs interferes with the detection, and existing methods based on nodes or edges introduce unwanted noise into representation results, thereby impacting the effectiveness of detection. To address these issues, we propose PhoGAD, a graph-based anomaly detection framework. PhoGAD leverages persistent homology optimization to clarify behavioral boundaries. Building upon this, the weights of adjacent edges are designed to mitigate the effects of local heterophily. Subsequently, to tackle the noise problem, we conduct a formal analysis and propose a disentangled representation-based explicit embedding method, ultimately achieving anomaly behavior detection. Experiments on intrusion, traffic, and spam datasets verify that PhoGAD has surpassed the performance of state-of-the-art (SOTA) frameworks in detection efficacy. Notably, PhoGAD demonstrates robust detection even with diminished anomaly proportions, highlighting its applicability to real-world scenarios. The analysis of persistent homology demonstrates its effectiveness in capturing the topological structure formed by normal edge features. Additionally, ablation experiments validate the effectiveness of the innovative mechanisms integrated within PhoGAD.
Abstract:Structural causal models (SCMs) are widely used in various disciplines to represent causal relationships among variables in complex systems. Unfortunately, the true underlying directed acyclic graph (DAG) structure is often unknown, and determining it from observational or interventional data remains a challenging task. However, in many situations, the end goal is to identify changes (shifts) in causal mechanisms between related SCMs rather than recovering the entire underlying DAG structure. Examples include analyzing gene regulatory network structure changes between healthy and cancerous individuals or understanding variations in biological pathways under different cellular contexts. This paper focuses on identifying $\textit{functional}$ mechanism shifts in two or more related SCMs over the same set of variables -- $\textit{without estimating the entire DAG structure of each SCM}$. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key contribution of this work is to show that the Jacobian of the score function for the $\textit{mixture distribution}$ allows for identification of shifts in general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach.
Abstract:Music representation learning is notoriously difficult for its complex human-related concepts contained in the sequence of numerical signals. To excavate better MUsic SEquence Representation from labeled audio, we propose a novel text-supervision pre-training method, namely MUSER. MUSER adopts an audio-spectrum-text tri-modal contrastive learning framework, where the text input could be any form of meta-data with the help of text templates while the spectrum is derived from an audio sequence. Our experiments reveal that MUSER could be more flexibly adapted to downstream tasks compared with the current data-hungry pre-training method, and it only requires 0.056% of pre-training data to achieve the state-of-the-art performance.