Abstract:Uncovering early-stage metrics that reflect final model performance is one core principle for large-scale pretraining. The existing scaling law demonstrates the power-law correlation between pretraining loss and training flops, which serves as an important indicator of the current training state for large language models. However, this principle only focuses on the model's compression properties on the training data, resulting in an inconsistency with the ability improvements on the downstream tasks. Some follow-up works attempted to extend the scaling-law to more complex metrics (such as hyperparameters), but still lacked a comprehensive analysis of the dynamic differences among various capabilities during pretraining. To address the aforementioned limitations, this paper undertakes a comprehensive comparison of model capabilities at various pretraining intermediate checkpoints. Through this analysis, we confirm that specific downstream metrics exhibit similar training dynamics across models of different sizes, up to 67 billion parameters. In addition to our core findings, we've reproduced Amber and OpenLLaMA, releasing their intermediate checkpoints. This initiative offers valuable resources to the research community and facilitates the verification and exploration of LLM pretraining by open-source researchers. Besides, we provide empirical summaries, including performance comparisons of different models and capabilities, and tuition of key metrics for different training phases. Based on these findings, we provide a more user-friendly strategy for evaluating the optimization state, offering guidance for establishing a stable pretraining process.
Abstract:Multilingual pretrained language models serve as repositories of multilingual factual knowledge. Nevertheless, a substantial performance gap of factual knowledge probing exists between high-resource languages and low-resource languages, suggesting limited implicit factual knowledge transfer across languages in multilingual pretrained language models. This paper investigates the feasibility of explicitly transferring relatively rich factual knowledge from English to non-English languages. To accomplish this, we propose two parameter-free $\textbf{L}$anguage $\textbf{R}$epresentation $\textbf{P}$rojection modules (LRP2). The first module converts non-English representations into English-like equivalents, while the second module reverts English-like representations back into representations of the corresponding non-English language. Experimental results on the mLAMA dataset demonstrate that LRP2 significantly improves factual knowledge retrieval accuracy and facilitates knowledge transferability across diverse non-English languages. We further investigate the working mechanism of LRP2 from the perspectives of representation space and cross-lingual knowledge neuron.
Abstract:Large language models pretrained on a huge amount of data capture rich knowledge and information in the training data. The ability of data memorization and regurgitation in pretrained language models, revealed in previous studies, brings the risk of data leakage. In order to effectively reduce these risks, we propose a framework DEPN to Detect and Edit Privacy Neurons in pretrained language models, partially inspired by knowledge neurons and model editing. In DEPN, we introduce a novel method, termed as privacy neuron detector, to locate neurons associated with private information, and then edit these detected privacy neurons by setting their activations to zero. Furthermore, we propose a privacy neuron aggregator dememorize private information in a batch processing manner. Experimental results show that our method can significantly and efficiently reduce the exposure of private data leakage without deteriorating the performance of the model. Additionally, we empirically demonstrate the relationship between model memorization and privacy neurons, from multiple perspectives, including model size, training time, prompts, privacy neuron distribution, illustrating the robustness of our approach.
Abstract:Massively multi-task learning with large language models has recently made substantial progress on few-shot generalization. However, this is usually performed in a centralized learning fashion, ignoring the privacy sensitivity issue of (annotated) data used in multiple tasks. To mitigate this issue, we propose FewFedWeight, a few-shot federated learning framework across multiple tasks, to achieve the best of both worlds: privacy preservation and cross-task generalization. FewFedWeight trains client models in isolated devices without sharing data. It broadcasts the global model in the server to each client and produces pseudo data for clients so that knowledge from the global model can be explored to enhance few-shot learning of each client model. An energy-based algorithm is further proposed to weight pseudo samples in order to reduce the negative impact of noise from the generated pseudo data. Adaptive model weights of client models are also tuned according to their performance. We use these model weights to dynamically aggregate client models to update the global model. Experiments on 118 NLP tasks show that FewFedWeight can significantly improve the performance of client models on 61% tasks with an average performance improvement rate of 30.5% over the baseline and substantially outperform FedAvg and other decentralized learning methods.
Abstract:Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.