Abstract:Online action detection (OAD) aims to identify ongoing actions from streaming video in real-time, without access to future frames. Since these actions manifest at varying scales of granularity, ranging from coarse to fine, projecting an entire set of action frames to a single latent encoding may result in a lack of local information, necessitating the acquisition of action features across multiple scales. In this paper, we propose a multi-scale action learning transformer (MALT), which includes a novel recurrent decoder (used for feature fusion) that includes fewer parameters and can be trained more efficiently. A hierarchical encoder with multiple encoding branches is further proposed to capture multi-scale action features. The output from the preceding branch is then incrementally input to the subsequent branch as part of a cross-attention calculation. In this way, output features transition from coarse to fine as the branches deepen. We also introduce an explicit frame scoring mechanism employing sparse attention, which filters irrelevant frames more efficiently, without requiring an additional network. The proposed method achieved state-of-the-art performance on two benchmark datasets (THUMOS'14 and TVSeries), outperforming all existing models used for comparison, with an mAP of 0.2% for THUMOS'14 and an mcAP of 0.1% for TVseries.
Abstract:The development of a general purpose service robot for daily life necessitates the robot's ability to deploy a myriad of fundamental behaviors judiciously. Recent advancements in training Large Language Models (LLMs) can be used to generate action sequences directly, given an instruction in natural language with no additional domain information. However, while the outputs of LLMs are semantically correct, the generated task plans may not accurately map to acceptable actions and might encompass various linguistic ambiguities. LLM hallucinations pose another challenge for robot task planning, which results in content that is inconsistent with real-world facts or user inputs. In this paper, we propose a task planning method based on a constrained LLM prompt scheme, which can generate an executable action sequence from a command. An exceptional handling module is further proposed to deal with LLM hallucinations problem. This module can ensure the LLM-generated results are admissible in the current environment. We evaluate our method on the commands generated by the RoboCup@Home Command Generator, observing that the robot demonstrates exceptional performance in both comprehending instructions and executing tasks.