Abstract:Code-mixing(CM) or code-switching(CSW) refers to the juxtaposition of linguistic units from two or more languages during the conversation or sometimes even a single utterance. Code-mixing introduces unique challenges in daily life, such as syntactic mismatches and semantic blending, that are rarely encountered in monolingual settings. Large language models (LLMs) have revolutionized the field of natural language processing (NLP) by offering unprecedented capabilities in understanding human languages. However, the effectiveness of current state-of-the-art multilingual LLMs has not yet been fully explored in the CM scenario. To fill this gap, we first benchmark the performance of multilingual LLMs on various code-mixing NLP tasks. Then we propose to improve the multilingual LLMs' ability to understand code-mixing through reinforcement learning from human feedback (RLHF) and code-mixed machine translation tasks. Given the high-cost and time-consuming preference labeling procedure, we improve this by utilizing LLMs as annotators to perform the reinforcement learning from AI feedback (RLAIF). The experiments show the effectiveness of the proposed method.
Abstract:With the rise of AI-generated content spewed at scale from large language models (LLMs), genuine concerns about the spread of fake news have intensified. The perceived ability of LLMs to produce convincing fake news at scale poses new challenges for both human and automated fake news detection systems. To address this gap, this work presents the findings from a university-level competition which aimed to explore how LLMs can be used by humans to create fake news, and to assess the ability of human annotators and AI models to detect it. A total of 110 participants used LLMs to create 252 unique fake news stories, and 84 annotators participated in the detection tasks. Our findings indicate that LLMs are ~68% more effective at detecting real news than humans. However, for fake news detection, the performance of LLMs and humans remains comparable (~60% accuracy). Additionally, we examine the impact of visual elements (e.g., pictures) in news on the accuracy of detecting fake news stories. Finally, we also examine various strategies used by fake news creators to enhance the credibility of their AI-generated content. This work highlights the increasing complexity of detecting AI-generated fake news, particularly in collaborative human-AI settings.
Abstract:This paper challenges the conventional belief that softmax attention in transformers is effective primarily because it generates a probability distribution for attention allocation. Instead, we theoretically show that its success lies in its ability to implicitly regularize the Frobenius norm of the attention matrix during training. We then explore alternative activations that regularize the Frobenius norm of the attention matrix, demonstrating that certain polynomial activations can achieve this effect, making them suitable for attention-based architectures. Empirical results indicate these activations perform comparably or better than softmax across various computer vision and language tasks, suggesting new possibilities for attention mechanisms beyond softmax.
Abstract:In today's global digital landscape, misinformation transcends linguistic boundaries, posing a significant challenge for moderation systems. While significant advances have been made in misinformation detection, the focus remains largely on monolingual high-resource contexts, with low-resource languages often overlooked. This survey aims to bridge that gap by providing a comprehensive overview of the current research on low-resource language misinformation detection in both monolingual and multilingual settings. We review the existing datasets, methodologies, and tools used in these domains, identifying key challenges related to: data resources, model development, cultural and linguistic context, real-world applications, and research efforts. We also examine emerging approaches, such as language-agnostic models and multi-modal techniques, while emphasizing the need for improved data collection practices, interdisciplinary collaboration, and stronger incentives for socially responsible AI research. Our findings underscore the need for robust, inclusive systems capable of addressing misinformation across diverse linguistic and cultural contexts.
Abstract:The widespread adoption of large language models (LLMs) and generative AI (GenAI) tools across diverse applications has amplified the importance of addressing societal biases inherent within these technologies. While the NLP community has extensively studied LLM bias, research investigating how non-expert users perceive and interact with biases from these systems remains limited. As these technologies become increasingly prevalent, understanding this question is crucial to inform model developers in their efforts to mitigate bias. To address this gap, this work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools. We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI. Our finding provides unique insights into how non-expert users perceive and interact with biases from GenAI tools.
Abstract:Generalist robot manipulation policies (GMPs) have the potential to generalize across a wide range of tasks, devices, and environments. However, existing policies continue to struggle with out-of-distribution scenarios due to the inherent difficulty of collecting sufficient action data to cover extensively diverse domains. While fine-tuning offers a practical way to quickly adapt a GMPs to novel domains and tasks with limited samples, we observe that the performance of the resulting GMPs differs significantly with respect to the design choices of fine-tuning strategies. In this work, we first conduct an in-depth empirical study to investigate the effect of key factors in GMPs fine-tuning strategies, covering the action space, policy head, supervision signal and the choice of tunable parameters, where 2,500 rollouts are evaluated for a single configuration. We systematically discuss and summarize our findings and identify the key design choices, which we believe give a practical guideline for GMPs fine-tuning. We observe that in a low-data regime, with carefully chosen fine-tuning strategies, a GMPs significantly outperforms the state-of-the-art imitation learning algorithms. The results presented in this work establish a new baseline for future studies on fine-tuned GMPs, and provide a significant addition to the GMPs toolbox for the community.
Abstract:Large language models (LLMs) have shown remarkable performance in various tasks but often fail to handle queries that exceed their knowledge and capabilities, leading to incorrect or fabricated responses. This paper addresses the need for LLMs to recognize and refuse infeasible tasks due to the required skills surpassing their capabilities. We first systematically conceptualize infeasible tasks for LLMs, providing formal definitions and categorizations that cover a spectrum of related hallucinations. We develop and benchmark a new dataset comprising diverse infeasible and feasible tasks to test multiple LLMs' abilities on task feasibility. Furthermore, we explore the potential of training enhancements to increase LLMs' refusal capabilities with fine-tuning. Experiments validate the effectiveness of our methods, offering promising directions for refining the operational boundaries of LLMs in real applications.
Abstract:The elaborate pavement performance prediction is an important premise of implementing preventive maintenance. Our survey reveals that in practice, the pavement performance is usually measured at segment-level, where an unique performance value is obtained for all lanes within one segment of 1km length. It still lacks more elaborate performance analysis at lane-level due to costly data collection and difficulty in prediction modeling. Therefore, this study developed a multi-task deep learning approach to predict the lane-level pavement performance with a large amount of historical segment-level performance measurement data. The unified prediction framework can effectively address inherent correlation and differences across lanes. In specific, the prediction framework firstly employed an Long Short-Term Memory (LSTM) layer to capture the segment-level pavement deterioration pattern. Then multiple task-specific LSTM layers were designed based on number of lanes to capture lane-level differences in pavement performance. Finally, we concatenated multiple task-specific LSTM outputs with auxiliary features for further training and obtained the lane-level predictions after fully connected layer. The aforementioned prediction framework was validated with a real case in China. It revealed a better model performance regardless of one-way 2-lane, 3-lane, and 4-lane scenarios, all lower than 10% in terms of mean absolute percentage error. The proposed prediction framework also outperforms other ensemble learning and shallow machine learning methods in almost every lane.
Abstract:In recent years, there has been significant interest in creating 3D avatars and motions, driven by their diverse applications in areas like film-making, video games, AR/VR, and human-robot interaction. However, current efforts primarily concentrate on either generating the 3D avatar mesh alone or producing motion sequences, with integrating these two aspects proving to be a persistent challenge. Additionally, while avatar and motion generation predominantly target humans, extending these techniques to animals remains a significant challenge due to inadequate training data and methods. To bridge these gaps, our paper presents three key contributions. Firstly, we proposed a novel agent-based approach named Motion Avatar, which allows for the automatic generation of high-quality customizable human and animal avatars with motions through text queries. The method significantly advanced the progress in dynamic 3D character generation. Secondly, we introduced a LLM planner that coordinates both motion and avatar generation, which transforms a discriminative planning into a customizable Q&A fashion. Lastly, we presented an animal motion dataset named Zoo-300K, comprising approximately 300,000 text-motion pairs across 65 animal categories and its building pipeline ZooGen, which serves as a valuable resource for the community. See project website https://steve-zeyu-zhang.github.io/MotionAvatar/
Abstract:Large Vision-Language Models (LVLMs) show significant strides in general-purpose multimodal applications such as visual dialogue and embodied navigation. However, existing multimodal evaluation benchmarks cover a limited number of multimodal tasks testing rudimentary capabilities, falling short in tracking LVLM development. In this study, we present MMT-Bench, a comprehensive benchmark designed to assess LVLMs across massive multimodal tasks requiring expert knowledge and deliberate visual recognition, localization, reasoning, and planning. MMT-Bench comprises $31,325$ meticulously curated multi-choice visual questions from various multimodal scenarios such as vehicle driving and embodied navigation, covering $32$ core meta-tasks and $162$ subtasks in multimodal understanding. Due to its extensive task coverage, MMT-Bench enables the evaluation of LVLMs using a task map, facilitating the discovery of in- and out-of-domain tasks. Evaluation results involving $30$ LVLMs such as the proprietary GPT-4V, GeminiProVision, and open-sourced InternVL-Chat, underscore the significant challenges posed by MMT-Bench. We anticipate that MMT-Bench will inspire the community to develop next-generation multimodal foundation models aimed at achieving general-purpose multimodal intelligence.