Abstract:Accurately mapping the radio environment (e.g., identifying wireless signal strength at specific frequency bands and geographic locations) is crucial for efficient spectrum sharing, enabling secondary users (SUs) to access underutilized spectrum bands while protecting primary users (PUs). However, current models are either not generalizable due to shadowing, interference, and fading or are computationally too expensive, limiting real-world applicability. To address the shortcomings of existing models, we derive a second-order partial differential equation (PDE) for the Received Signal Strength Indicator (RSSI) based on a statistical model used in the literature. We then propose ReVeal (Re-constructor and Visualizer of Spectrum Landscape), a novel Physics-Informed Neural Network (PINN) that integrates the PDE residual into a neural network loss function to accurately model the radio environment based on sparse RF sensor measurements. ReVeal is validated using real-world measurement data from the rural and suburban areas of the ARA testbed and benchmarked against existing methods.ReVeal outperforms the existing methods in predicting the radio environment; for instance, with a root mean square error (RMSE) of only 1.95 dB, ReVeal achieves an accuracy that is an order of magnitude higher than existing methods such as the 3GPP and ITU-R channel models, ray-tracing, and neural networks. ReVeal achieves both high accuracy and low computational complexity while only requiring sparse RF sampling, for instance, only requiring 30 training sample points across an area of 514 square kilometers.
Abstract:Large language models (LLMs) have achieved remarkable success on various aspects of human life. However, one of the major challenges in deploying these models is the substantial memory consumption required to store key-value pairs (KV), which imposes significant resource demands. Recent research has focused on KV cache budget allocation, with several approaches proposing head-level budget distribution by evaluating the importance of individual attention heads. These methods, however, assess the importance of heads independently, overlooking their cooperative contributions within the model, which may result in a deviation from their true impact on model performance. In light of this limitation, we propose CoKV, a novel method that models the cooperation between heads in model inference as a cooperative game. By evaluating the contribution of each head within the cooperative game, CoKV can allocate the cache budget more effectively. Extensive experiments show that CoKV achieves state-of-the-art performance on the LongBench benchmark using LLama-3-8B-Instruct and Mistral-7B models.
Abstract:Merely pursuing performance may adversely affect the safety, while a conservative policy for safe exploration will degrade the performance. How to balance the safety and performance in learning-based control problems is an interesting yet challenging issue. This paper aims to enhance system performance with safety guarantee in solving the reinforcement learning (RL)-based optimal control problems of nonlinear systems subject to high-relative-degree state constraints and unknown time-varying disturbance/actuator faults. First, to combine control barrier functions (CBFs) with RL, a new type of CBFs, termed high-order reciprocal control barrier function (HO-RCBF) is proposed to deal with high-relative-degree constraints during the learning process. Then, the concept of gradient similarity is proposed to quantify the relationship between the gradient of safety and the gradient of performance. Finally, gradient manipulation and adaptive mechanisms are introduced in the safe RL framework to enhance the performance with a safety guarantee. Two simulation examples illustrate that the proposed safe RL framework can address high-relative-degree constraint, enhance safety robustness and improve system performance.
Abstract:Coping with the impact of dynamic channels is a critical issue in joint source-channel coding (JSCC)-based semantic communication systems. In this paper, we propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC. It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks and dynamically adjusting attention scores through channel-adaptive Queries. Meanwhile, penalty terms are introduced in the loss function to stabilize the training process. Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR, which requires no retraining of SNR-EQ-JSCC. Simulation results conducted on image transmission demonstrate that the proposed SNR-EQJSCC outperforms the state-of-the-art SwinJSCC in peak signal-to-noise ratio (PSNR) and perception metrics while only requiring 0.05% of the storage overhead and 6.38% of the computational complexity for CA. Moreover, the channel-adaptive query method demonstrates significant improvements in perception metrics. When instantaneous SNR feedback is imperfect, SNR-EQ-JSCC using only the average SNR still surpasses baseline schemes.
Abstract:Due to factors such as low population density and expansive geographical distances, network deployment falls behind in rural regions, leading to a broadband divide. Wireless spectrum serves as the blood and flesh of wireless communications. Shared white spaces such as those in the TVWS and CBRS spectrum bands offer opportunities to expand connectivity, innovate, and provide affordable access to high-speed Internet in under-served areas without additional cost to expensive licensed spectrum. However, the current methods to utilize these white spaces are inefficient due to very conservative models and spectrum policies, causing under-utilization of valuable spectrum resources. This hampers the full potential of innovative wireless technologies that could benefit farmers, small Internet Service Providers (ISPs) or Mobile Network Operators (MNOs) operating in rural regions. This study explores the challenges faced by farmers and service providers when using shared spectrum bands to deploy their networks while ensuring maximum system performance and minimizing interference with other users. Additionally, we discuss how spatiotemporal spectrum models, in conjunction with database-driven spectrum-sharing solutions, can enhance the allocation and management of spectrum resources, ultimately improving the efficiency and reliability of wireless networks operating in shared spectrum bands.
Abstract:As a two-sided marketplace, Airbnb brings together hosts who own listings for rent with prospective guests from around the globe. Results from a guest's search for listings are displayed primarily through two interfaces: (1) as a list of rectangular cards that contain on them the listing image, price, rating, and other details, referred to as list-results (2) as oval pins on a map showing the listing price, called map-results. Both these interfaces, since their inception, have used the same ranking algorithm that orders listings by their booking probabilities and selects the top listings for display. But some of the basic assumptions underlying ranking, built for a world where search results are presented as lists, simply break down for maps. This paper describes how we rebuilt ranking for maps by revising the mathematical foundations of how users interact with search results. Our iterative and experiment-driven approach led us through a path full of twists and turns, ending in a unified theory for the two interfaces. Our journey shows how assumptions taken for granted when designing machine learning algorithms may not apply equally across all user interfaces, and how they can be adapted. The net impact was one of the largest improvements in user experience for Airbnb which we discuss as a series of experimental validations.
Abstract:Backdoor attacks become a significant security concern for deep neural networks in recent years. An image classification model can be compromised if malicious backdoors are injected into it. This corruption will cause the model to function normally on clean images but predict a specific target label when triggers are present. Previous research can be categorized into two genres: poisoning a portion of the dataset with triggered images for users to train the model from scratch, or training a backdoored model alongside a triggered image generator. Both approaches require significant amount of attackable parameters for optimization to establish a connection between the trigger and the target label, which may raise suspicions as more people become aware of the existence of backdoor attacks. In this paper, we propose a backdoor attack paradigm that only requires minimal alterations (specifically, the output layer) to a clean model in order to inject the backdoor under the guise of fine-tuning. To achieve this, we leverage mode mixture samples, which are located between different modes in latent space, and introduce a novel method for conducting backdoor attacks. We evaluate the effectiveness of our method on four popular benchmark datasets: MNIST, CIFAR-10, GTSRB, and TinyImageNet.
Abstract:Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on seven benchmark datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.
Abstract:In this work, we discover a phenomenon of community bias amplification in graph representation learning, which refers to the exacerbation of performance bias between different classes by graph representation learning. We conduct an in-depth theoretical study of this phenomenon from a novel spectral perspective. Our analysis suggests that structural bias between communities results in varying local convergence speeds for node embeddings. This phenomenon leads to bias amplification in the classification results of downstream tasks. Based on the theoretical insights, we propose random graph coarsening, which is proved to be effective in dealing with the above issue. Finally, we propose a novel graph contrastive learning model called Random Graph Coarsening Contrastive Learning (RGCCL), which utilizes random coarsening as data augmentation and mitigates community bias by contrasting the coarsened graph with the original graph. Extensive experiments on various datasets demonstrate the advantage of our method when dealing with community bias amplification.
Abstract:The security issues in DNNs, such as adversarial examples, have attracted much attention. Adversarial examples refer to the examples which are capable to induce the DNNs return completely predictions by introducing carefully designed perturbations. Obviously, adversarial examples bring great security risks to the development of deep learning. Recently, Some defense approaches against adversarial examples have been proposed, however, in our opinion, the performance of these approaches are still limited. In this paper, we propose a new ensemble defense approach named the Negative Correlation Ensemble (NCEn), which achieves compelling results by introducing gradient directions and gradient magnitudes of each member in the ensemble negatively correlated and at the same time, reducing the transferability of adversarial examples among them. Extensive experiments have been conducted, and the results demonstrate that NCEn can improve the adversarial robustness of ensembles effectively.