Abstract:Coping with the impact of dynamic channels is a critical issue in joint source-channel coding (JSCC)-based semantic communication systems. In this paper, we propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC. It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks and dynamically adjusting attention scores through channel-adaptive Queries. Meanwhile, penalty terms are introduced in the loss function to stabilize the training process. Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR, which requires no retraining of SNR-EQ-JSCC. Simulation results conducted on image transmission demonstrate that the proposed SNR-EQJSCC outperforms the state-of-the-art SwinJSCC in peak signal-to-noise ratio (PSNR) and perception metrics while only requiring 0.05% of the storage overhead and 6.38% of the computational complexity for CA. Moreover, the channel-adaptive query method demonstrates significant improvements in perception metrics. When instantaneous SNR feedback is imperfect, SNR-EQ-JSCC using only the average SNR still surpasses baseline schemes.
Abstract:Due to factors such as low population density and expansive geographical distances, network deployment falls behind in rural regions, leading to a broadband divide. Wireless spectrum serves as the blood and flesh of wireless communications. Shared white spaces such as those in the TVWS and CBRS spectrum bands offer opportunities to expand connectivity, innovate, and provide affordable access to high-speed Internet in under-served areas without additional cost to expensive licensed spectrum. However, the current methods to utilize these white spaces are inefficient due to very conservative models and spectrum policies, causing under-utilization of valuable spectrum resources. This hampers the full potential of innovative wireless technologies that could benefit farmers, small Internet Service Providers (ISPs) or Mobile Network Operators (MNOs) operating in rural regions. This study explores the challenges faced by farmers and service providers when using shared spectrum bands to deploy their networks while ensuring maximum system performance and minimizing interference with other users. Additionally, we discuss how spatiotemporal spectrum models, in conjunction with database-driven spectrum-sharing solutions, can enhance the allocation and management of spectrum resources, ultimately improving the efficiency and reliability of wireless networks operating in shared spectrum bands.
Abstract:As a two-sided marketplace, Airbnb brings together hosts who own listings for rent with prospective guests from around the globe. Results from a guest's search for listings are displayed primarily through two interfaces: (1) as a list of rectangular cards that contain on them the listing image, price, rating, and other details, referred to as list-results (2) as oval pins on a map showing the listing price, called map-results. Both these interfaces, since their inception, have used the same ranking algorithm that orders listings by their booking probabilities and selects the top listings for display. But some of the basic assumptions underlying ranking, built for a world where search results are presented as lists, simply break down for maps. This paper describes how we rebuilt ranking for maps by revising the mathematical foundations of how users interact with search results. Our iterative and experiment-driven approach led us through a path full of twists and turns, ending in a unified theory for the two interfaces. Our journey shows how assumptions taken for granted when designing machine learning algorithms may not apply equally across all user interfaces, and how they can be adapted. The net impact was one of the largest improvements in user experience for Airbnb which we discuss as a series of experimental validations.
Abstract:Backdoor attacks become a significant security concern for deep neural networks in recent years. An image classification model can be compromised if malicious backdoors are injected into it. This corruption will cause the model to function normally on clean images but predict a specific target label when triggers are present. Previous research can be categorized into two genres: poisoning a portion of the dataset with triggered images for users to train the model from scratch, or training a backdoored model alongside a triggered image generator. Both approaches require significant amount of attackable parameters for optimization to establish a connection between the trigger and the target label, which may raise suspicions as more people become aware of the existence of backdoor attacks. In this paper, we propose a backdoor attack paradigm that only requires minimal alterations (specifically, the output layer) to a clean model in order to inject the backdoor under the guise of fine-tuning. To achieve this, we leverage mode mixture samples, which are located between different modes in latent space, and introduce a novel method for conducting backdoor attacks. We evaluate the effectiveness of our method on four popular benchmark datasets: MNIST, CIFAR-10, GTSRB, and TinyImageNet.
Abstract:In this work, we discover a phenomenon of community bias amplification in graph representation learning, which refers to the exacerbation of performance bias between different classes by graph representation learning. We conduct an in-depth theoretical study of this phenomenon from a novel spectral perspective. Our analysis suggests that structural bias between communities results in varying local convergence speeds for node embeddings. This phenomenon leads to bias amplification in the classification results of downstream tasks. Based on the theoretical insights, we propose random graph coarsening, which is proved to be effective in dealing with the above issue. Finally, we propose a novel graph contrastive learning model called Random Graph Coarsening Contrastive Learning (RGCCL), which utilizes random coarsening as data augmentation and mitigates community bias by contrasting the coarsened graph with the original graph. Extensive experiments on various datasets demonstrate the advantage of our method when dealing with community bias amplification.
Abstract:Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on seven benchmark datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.
Abstract:The security issues in DNNs, such as adversarial examples, have attracted much attention. Adversarial examples refer to the examples which are capable to induce the DNNs return completely predictions by introducing carefully designed perturbations. Obviously, adversarial examples bring great security risks to the development of deep learning. Recently, Some defense approaches against adversarial examples have been proposed, however, in our opinion, the performance of these approaches are still limited. In this paper, we propose a new ensemble defense approach named the Negative Correlation Ensemble (NCEn), which achieves compelling results by introducing gradient directions and gradient magnitudes of each member in the ensemble negatively correlated and at the same time, reducing the transferability of adversarial examples among them. Extensive experiments have been conducted, and the results demonstrate that NCEn can improve the adversarial robustness of ensembles effectively.
Abstract:Existing deep learning-enabled semantic communication systems often rely on shared background knowledge between the transmitter and receiver that includes empirical data and their associated semantic information. In practice, the semantic information is defined by the pragmatic task of the receiver and cannot be known to the transmitter. The actual observable data at the transmitter can also have non-identical distribution with the empirical data in the shared background knowledge library. To address these practical issues, this paper proposes a new neural network-based semantic communication system for image transmission, where the task is unaware at the transmitter and the data environment is dynamic. The system consists of two main parts, namely the semantic extraction (SE) network and the data adaptation (DA) network. The SE network learns how to extract the semantic information using a receiver-leading training process. By using domain adaptation technique from transfer learning, the DA network learns how to convert the data observed into a similar form of the empirical data that the SE network can process without re-training. Numerical experiments show that the proposed method can be adaptive to observable datasets while keeping high performance in terms of both data recovery and task execution. The codes are available on https://github.com/SJTU-mxtao/Semantic-Communication-Systems.
Abstract:Knowledge-based leader-following synchronization problem of heterogeneous nonlinear multi-agent systems is challenging since the leader's dynamic information is unknown to all follower nodes. This paper proposes a learning-based fully distributed observer for a class of nonlinear leader systems, which can simultaneously learn the leader's dynamics and states. The class of leader dynamics considered here does not require a bounded Jacobian matrix. Based on this learning-based distributed observer, we further synthesize an adaptive distributed control law for solving the leader-following synchronization problem of multiple Euler-Lagrange systems subject to an uncertain nonlinear leader system. The results are illustrated by a simulation example.
Abstract:We present our solutions to the Google Landmark Challenges 2021, for both the retrieval and the recognition tracks. Both solutions are ensembles of transformers and ConvNet models based on Sub-center ArcFace with dynamic margins. Since the two tracks share the same training data, we used the same pipeline and training approach, but with different model selections for the ensemble and different post-processing. The key improvement over last year is newer state-of-the-art vision architectures, especially transformers which significantly outperform ConvNets for the retrieval task. We finished third and fourth places for the retrieval and recognition tracks respectively.