Abstract:Pre-trained models have demonstrated impressive generalization capabilities, yet they remain vulnerable to catastrophic forgetting when incrementally trained on new tasks. Existing architecture-based strategies encounter two primary challenges: 1) Integrating a pre-trained network with a trainable sub-network complicates the delicate balance between learning plasticity and memory stability across evolving tasks during learning. 2) The absence of robust interconnections between pre-trained networks and various sub-networks limits the effective retrieval of pertinent information during inference. In this study, we introduce the Artsy, inspired by the activation mechanisms of silent synapses via spike-timing-dependent plasticity observed in mature brains, to enhance the continual learning capabilities of pre-trained models. The Artsy integrates two key components: During training, the Artsy mimics mature brain dynamics by maintaining memory stability for previously learned knowledge within the pre-trained network while simultaneously promoting learning plasticity in task-specific sub-networks. During inference, artificial silent and functional synapses are utilized to establish precise connections between the pre-synaptic neurons in the pre-trained network and the post-synaptic neurons in the sub-networks, facilitated through synaptic consolidation, thereby enabling effective extraction of relevant information from test samples. Comprehensive experimental evaluations reveal that our model significantly outperforms conventional methods on class-incremental learning tasks, while also providing enhanced biological interpretability for architecture-based approaches. Moreover, we propose that the Artsy offers a promising avenue for simulating biological synaptic mechanisms, potentially advancing our understanding of neural plasticity in both artificial and biological systems.
Abstract:The Forward-Forward (FF) algorithm was recently proposed as a local learning method to address the limitations of backpropagation (BP), offering biological plausibility along with memory-efficient and highly parallelized computational benefits. However, it suffers from suboptimal performance and poor generalization, largely due to inadequate theoretical support and a lack of effective learning strategies. In this work, we reformulate FF using distance metric learning and propose a distance-forward algorithm (DF) to improve FF performance in supervised vision tasks while preserving its local computational properties, making it competitive for efficient on-chip learning. To achieve this, we reinterpret FF through the lens of centroid-based metric learning and develop a goodness-based N-pair margin loss to facilitate the learning of discriminative features. Furthermore, we integrate layer-collaboration local update strategies to reduce information loss caused by greedy local parameter updates. Our method surpasses existing FF models and other advanced local learning approaches, with accuracies of 99.7\% on MNIST, 88.2\% on CIFAR-10, 59\% on CIFAR-100, 95.9\% on SVHN, and 82.5\% on ImageNette, respectively. Moreover, it achieves comparable performance with less than 40\% memory cost compared to BP training, while exhibiting stronger robustness to multiple types of hardware-related noise, demonstrating its potential for online learning and energy-efficient computation on neuromorphic chips.
Abstract:In recent years, spiking neural networks (SNNs) have attracted substantial interest due to their potential to replicate the energy-efficient and event-driven processing of biological neurons. Despite this, the application of SNNs in graph representation learning, particularly for non-Euclidean data, remains underexplored, and the influence of spiking dynamics on graph learning is not yet fully understood. This work seeks to address these gaps by examining the unique properties and benefits of spiking dynamics in enhancing graph representation learning. We propose a spike-based graph neural network model that incorporates spiking dynamics, enhanced by a novel spatial-temporal feature normalization (STFN) technique, to improve training efficiency and model stability. Our detailed analysis explores the impact of rate coding and temporal coding on SNN performance, offering new insights into their advantages for deep graph networks and addressing challenges such as the oversmoothing problem. Experimental results demonstrate that our SNN models can achieve competitive performance with state-of-the-art graph neural networks (GNNs) while considerably reducing computational costs, highlighting the potential of SNNs for efficient neuromorphic computing applications in complex graph-based scenarios.
Abstract:The precise quantification of nucleic acids is pivotal in molecular biology, underscored by the rising prominence of nucleic acid amplification tests (NAAT) in diagnosing infectious diseases and conducting genomic studies. This review examines recent advancements in digital Polymerase Chain Reaction (dPCR) and digital Loop-mediated Isothermal Amplification (dLAMP), which surpass the limitations of traditional NAAT by offering absolute quantification and enhanced sensitivity. In this review, we summarize the compelling advancements of dNNAT in addressing pressing public health issues, especially during the COVID-19 pandemic. Further, we explore the transformative role of artificial intelligence (AI) in enhancing dNAAT image analysis, which not only improves efficiency and accuracy but also addresses traditional constraints related to cost, complexity, and data interpretation. In encompassing the state-of-the-art (SOTA) development and potential of both software and hardware, the all-encompassing Point-of-Care Testing (POCT) systems cast new light on benefits including higher throughput, label-free detection, and expanded multiplex analyses. While acknowledging the enhancement of AI-enhanced dNAAT technology, this review aims to both fill critical gaps in the existing technologies through comparative assessments and offer a balanced perspective on the current trajectory, including attendant challenges and future directions. Leveraging AI, next-generation dPCR and dLAMP technologies promises integration into clinical practice, improving personalized medicine, real-time epidemic surveillance, and global diagnostic accessibility.
Abstract:Graph representation learning has become a crucial task in machine learning and data mining due to its potential for modeling complex structures such as social networks, chemical compounds, and biological systems. Spiking neural networks (SNNs) have recently emerged as a promising alternative to traditional neural networks for graph learning tasks, benefiting from their ability to efficiently encode and process temporal and spatial information. In this paper, we propose a novel approach that integrates attention mechanisms with SNNs to improve graph representation learning. Specifically, we introduce an attention mechanism for SNN that can selectively focus on important nodes and corresponding features in a graph during the learning process. We evaluate our proposed method on several benchmark datasets and show that it achieves comparable performance compared to existing graph learning techniques.
Abstract:Spiking neural networks (SNNs), inspired by the neural circuits of the brain, are promising in achieving high computational efficiency with biological fidelity. Nevertheless, it is quite difficult to optimize SNNs because the functional roles of their modelling components remain unclear. By designing and evaluating several variants of the classic model, we systematically investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs. Through extensive experiments, we demonstrate how these components influence the accuracy, generalization, and robustness of SNNs. Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation. With these interesting observations, we provide optimization suggestions for enhancing the performance of SNNs in different scenarios. This work deepens the understanding of how SNNs work, which offers valuable guidance for the development of more effective and robust neuromorphic models.
Abstract:Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain for processing multimodal information in complex environments. Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data represented by graph data, mainly due to the lack of effective modeling framework and useful training techniques. Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning. Through spatial-temporal unfolding for spiking data flows of node features, we incorporate graph convolution filters into spiking dynamics and formalize a synergistic learning paradigm. Considering the unique features of spike representation and spiking dynamics, we propose a spatial-temporal feature normalization (STFN) technique suitable for SNN to accelerate convergence. We instantiate our methods into two spiking graph models, including graph convolution SNNs and graph attention SNNs, and validate their performance on three node-classification benchmarks, including Cora, Citeseer, and Pubmed. Our model can achieve comparable performance with the state-of-the-art graph neural network (GNN) models with much lower computation costs, demonstrating great benefits for the execution on neuromorphic hardware and prompting neuromorphic applications in graphical scenarios.
Abstract:Variational auto-encoders (VAEs) are an influential and generally-used class of likelihood-based generative models in unsupervised learning. The likelihood-based generative models have been reported to be highly robust to the out-of-distribution (OOD) inputs and can be a detector by assuming that the model assigns higher likelihoods to the samples from the in-distribution (ID) dataset than an OOD dataset. However, recent works reported a phenomenon that VAE recognizes some OOD samples as ID by assigning a higher likelihood to the OOD inputs compared to the one from ID. In this work, we introduce a new model, namely Bigeminal Priors Variational auto-encoder (BPVAE), to address this phenomenon. The BPVAE aims to enhance the robustness of the VAEs by combing the power of VAE with the two independent priors that belong to the training dataset and simple dataset, which complexity is lower than the training dataset, respectively. BPVAE learns two datasets'features, assigning a higher likelihood for the training dataset than the simple dataset. In this way, we can use BPVAE's density estimate for detecting the OOD samples. Quantitative experimental results suggest that our model has better generalization capability and stronger robustness than the standard VAEs, proving the effectiveness of the proposed approach of hybrid learning by collaborative priors. Overall, this work paves a new avenue to potentially overcome the OOD problem via multiple latent priors modeling.
Abstract:In unsupervised learning, variational auto-encoders (VAEs) are an influential class of deep generative models with rich representational power of neural networks and Bayesian methods. However, VAEs suffer from assigning higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. Recent studies advise that the deep generative models with reliable uncertainty estimation is critical to a deep understanding of OOD inputs. Meanwhile, noise contrastive prior (NCP) is an emerging promising method for obtaining uncertainty, with the advantages of easy to scale, being trainable, and compatibility with extensive models. Inspired by these ideas, We propose an improved noise contrastive prior (INCP) to acquire reliable uncertainty estimate for standard VAEs. By combining INCP with the encoder of VAE, patterns between OOD and ID inputs can be well captured and distinguished. Our method outperforms standard VAEs on the FashionMNIST and CIFAR10 datasets. We also demonstrate the preferred robustness of our model by the extensive experiments on anomaly detection tasks.
Abstract:The combination of neuroscience-oriented and computer-science-oriented approaches is the most promising method to develop artificial general intelligence (AGI) that can learn general tasks similar to humans. Currently, two main routes of learning exist, including neuroscience-inspired methods, represented by local synaptic plasticity, and machine-learning methods, represented by backpropagation. Both have advantages and complement each other, but neither can solve all learning problems well. Integrating these two methods into one network may provide better learning abilities for general tasks. Here, we report a hybrid spiking neural network model that integrates the two approaches by introducing a meta-local module and a two-phase causality modelling method. The model can not only optimize local plasticity rules, but also receive top-down supervision information. In addition to flexibly supporting multiple spike-based coding schemes, we demonstrate that this model facilitates learning of many general tasks, including fault-tolerance learning, few-shot learning and multiple-task learning, and show its efficiency on the Tianjic neuromorphic platform. This work provides a new route for brain-inspired computing and facilitates AGI development.