Abstract:Multi-modal large language models (MLLMs) have achieved remarkable success in fine-grained visual understanding across a range of tasks. However, they often encounter significant challenges due to inadequate alignment for fine-grained knowledge, which restricts their ability to accurately capture local details and attain a comprehensive global perception. While recent advancements have focused on aligning object expressions with grounding information, they typically lack explicit integration of object images, which contain affluent information beyond mere texts or coordinates. To bridge this gap, we introduce a novel fine-grained visual knowledge alignment method that effectively aligns and integrates multi-scale knowledge of objects, including texts, coordinates, and images. This innovative method is underpinned by our multi-scale fine-grained enhancement data synthesis pipeline, which provides over 300K essential training data to enhance alignment and improve overall performance. Furthermore, we present TinyGroundingGPT, a series of compact models optimized for high-level alignments. With a scale of approximately 3B parameters, TinyGroundingGPT achieves outstanding results in grounding tasks while delivering performance comparable to larger MLLMs in complex visual scenarios.
Abstract:Underwater object detection (UOD), aiming to identify and localise the objects in underwater images or videos, presents significant challenges due to the optical distortion, water turbidity, and changing illumination in underwater scenes. In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD. To further facilitate future advancements, we comprehensively study AI-based UOD. In this survey, we first categorise existing algorithms into traditional machine learning-based methods and deep learning-based methods, and summarise them by considering learning strategy, experimental dataset, utilised features or frameworks, and learning stage. Next, we discuss the potential challenges and suggest possible solutions and new directions. We also perform both quantitative and qualitative evaluations of mainstream algorithms across multiple benchmark datasets by considering the diverse and biased experimental setups. Finally, we introduce two off-the-shelf detection analysis tools, Diagnosis and TIDE, which well-examine the effects of object characteristics and various types of errors on detectors. These tools help identify the strengths and weaknesses of detectors, providing insigts for further improvement. The source codes, trained models, utilised datasets, detection results, and detection analysis tools are public available at \url{https://github.com/LongChenCV/UODReview}, and will be regularly updated.
Abstract:Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC). The brain-inspired models of spiking neural networks (SNN) have drawn massive attention for their energy efficiency and biological plausibility. To overcome catastrophic forgetting when learning multiple tasks in sequence, current SNN models for lifelong learning focus on memory reserving or regularization-based modification, while lacking SNN to replicate human experimental behavior. Inspired by biological context-dependent gating mechanisms found in PFC, we propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning. The iterative training between global and local plasticity for task units is designed to strengthen the connections between task neurons and hidden neurons and preserve the multi-task relevant information. The experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning. Our results provide new insights that the CG-SNN model can extend context gating with good scalability on different SNN architectures with different spike-firing mechanisms. Thus, our models have good potential for parallel implementation on neuromorphic hardware and model human's behavior.
Abstract:The emergence of deep and large-scale spiking neural networks (SNNs) exhibiting high performance across diverse complex datasets has led to a need for compressing network models due to the presence of a significant number of redundant structural units, aiming to more effectively leverage their low-power consumption and biological interpretability advantages. Currently, most model compression techniques for SNNs are based on unstructured pruning of individual connections, which requires specific hardware support. Hence, we propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework. Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task. While maintaining model performance, this approach refines the network architecture, ultimately reducing computational load and accelerating the inference process. This indicates that structured dynamic sparse learning methods can better facilitate the application of deep SNNs in low-power and high-efficiency scenarios.
Abstract:Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning by emulating the structure of the human nervous system. However, like convolutional neural networks, SNNs are vulnerable to adversarial attacks. To tackle the challenge, we propose a biologically inspired methodology to enhance the robustness of SNNs, drawing insights from the visual masking effect and filtering theory. First, an end-to-end SNN-based image purification model is proposed to defend against adversarial attacks, including a noise extraction network and a non-blind denoising network. The former network extracts noise features from noisy images, while the latter component employs a residual U-Net structure to reconstruct high-quality noisy images and generate clean images. Simultaneously, a multi-level firing SNN based on Squeeze-and-Excitation Network is introduced to improve the robustness of the classifier. Crucially, the proposed image purification network serves as a pre-processing module, avoiding modifications to classifiers. Unlike adversarial training, our method is highly flexible and can be seamlessly integrated with other defense strategies. Experimental results on various datasets demonstrate that the proposed methodology outperforms state-of-the-art baselines in terms of defense effectiveness, training time, and resource consumption.
Abstract:Creating 3D textured meshes using generative artificial intelligence has garnered significant attention recently. While existing methods support text-based generative texture generation or editing on 3D meshes, they often struggle to precisely control pixels of texture images through more intuitive interaction. While 2D images can be edited generatively using drag interaction, applying this type of methods directly to 3D mesh textures still leads to issues such as the lack of local consistency among multiple views, error accumulation and long training times. To address these challenges, we propose a generative point-based 3D mesh texture editing method called DragTex. This method utilizes a diffusion model to blend locally inconsistent textures in the region near the deformed silhouette between different views, enabling locally consistent texture editing. Besides, we fine-tune a decoder to reduce reconstruction errors in the non-drag region, thereby mitigating overall error accumulation. Moreover, we train LoRA using multi-view images instead of training each view individually, which significantly shortens the training time. The experimental results show that our method effectively achieves dragging textures on 3D meshes and generates plausible textures that align with the desired intent of drag interaction.
Abstract:Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose GroundingGPT, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //github.com/lzw-lzw/GroundingGPT.
Abstract:The emergence of novel the dummy data injection attack (DDIA) poses a severe threat to the secure and stable operation of power systems. These attacks are particularly perilous due to the minimal Euclidean spatial separation between the injected malicious data and legitimate data, rendering their precise detection challenging using conventional distance-based methods. Furthermore, existing research predominantly focuses on various machine learning techniques, often analyzing the temporal data sequences post-attack or relying solely on Euclidean spatial characteristics. Unfortunately, this approach tends to overlook the inherent topological correlations within the non-Euclidean spatial attributes of power grid data, consequently leading to diminished accuracy in attack localization. To address this issue, this study takes a comprehensive approach. Initially, it examines the underlying principles of these new DDIAs on power systems. Here, an intricate mathematical model of the DDIA is designed, accounting for incomplete topological knowledge and alternating current (AC) state estimation from an attacker's perspective. Subsequently, by integrating a priori knowledge of grid topology and considering the temporal correlations within measurement data and the topology-dependent attributes of the power grid, this study introduces temporal and spatial attention matrices. These matrices adaptively capture the spatio-temporal correlations within the attacks. Leveraging gated stacked causal convolution and graph wavelet sparse convolution, the study jointly extracts spatio-temporal DDIA features. Finally, the research proposes a DDIA localization method based on spatio-temporal graph neural networks. The accuracy and effectiveness of the DDIA model are rigorously demonstrated through comprehensive analytical cases.
Abstract:Spiking neural networks (SNNs) serve as one type of efficient model to process spatio-temporal patterns in time series, such as the Address-Event Representation data collected from Dynamic Vision Sensor (DVS). Although convolutional SNNs have achieved remarkable performance on these AER datasets, benefiting from the predominant spatial feature extraction ability of convolutional structure, they ignore temporal features related to sequential time points. In this paper, we develop a recurrent spiking neural network (RSNN) model embedded with an advanced spiking convolutional block attention module (SCBAM) component to combine both spatial and temporal features of spatio-temporal patterns. It invokes the history information in spatial and temporal channels adaptively through SCBAM, which brings the advantages of efficient memory calling and history redundancy elimination. The performance of our model was evaluated in DVS128-Gesture dataset and other time-series datasets. The experimental results show that the proposed SRNN-SCBAM model makes better use of the history information in spatial and temporal dimensions with less memory space, and achieves higher accuracy compared to other models.
Abstract:Driven by the term "the arrow of time" as a general topic, the article develops a musical discussion by referring to the etymological origin of the term: philosophy (epistemology) and physics (thermodynamics). In particular, the article explores two specific conditions: distinguishability and unique orientability, from which the article derives respective musical propositions and case studies. For the distinguishability condition, the article focuses on the "recurrence" in music and tries to interpret Bach's Christmas Oratorio from the perspective of "birth/resurrection". For the unique orientability condition, the article discusses the process of delaying the climax, thereby proposing "AB-AAB left-replication" model, implying an organicist view by treating the temporal structure of music (e.g. form) as the product of a dynamic process: organic growth.