Abstract:Detecting dynamic patterns of task-specific responses shared across heterogeneous datasets is an essential and challenging problem in many scientific applications in medical science and neuroscience. In our motivating example of rodent electrophysiological data, identifying the dynamical patterns in neuronal activity associated with ongoing cognitive demands and behavior is key to uncovering the neural mechanisms of memory. One of the greatest challenges in investigating a cross-subject biological process is that the systematic heterogeneity across individuals could significantly undermine the power of existing machine learning methods to identify the underlying biological dynamics. In addition, many technically challenging neurobiological experiments are conducted on only a handful of subjects where rich longitudinal data are available for each subject. The low sample sizes of such experiments could further reduce the power to detect common dynamic patterns among subjects. In this paper, we propose a novel heterogeneous data integration framework based on optimal transport to extract shared patterns in complex biological processes. The key advantages of the proposed method are that it can increase discriminating power in identifying common patterns by reducing heterogeneity unrelated to the signal by aligning the extracted latent spatiotemporal information across subjects. Our approach is effective even with a small number of subjects, and does not require auxiliary matching information for the alignment. In particular, our method can align longitudinal data across heterogeneous subjects in a common latent space to capture the dynamics of shared patterns while utilizing temporal dependency within subjects.
Abstract:The popularity of transfer learning stems from the fact that it can borrow information from useful auxiliary datasets. Existing statistical transfer learning methods usually adopt a global similarity measure between the source data and the target data, which may lead to inefficiency when only local information is shared. In this paper, we propose a novel Bayesian transfer learning method named "CONCERT" to allow robust local information transfer for high-dimensional data analysis. A novel conditional spike-and-slab prior is introduced in the joint distribution of target and source parameters for information transfer. By incorporating covariate-specific priors, we can characterize the local similarities and make the sources work collaboratively to help improve the performance on the target. Distinguished from existing work, CONCERT is a one-step procedure, which achieves variable selection and information transfer simultaneously. Variable selection consistency is established for our CONCERT. To make our algorithm scalable, we adopt the variational Bayes framework to facilitate implementation. Extensive experiments and a genetic data analysis demonstrate the validity and the advantage of CONCERT over existing cutting-edge transfer learning methods. We also extend our CONCERT to the logistical models with numerical studies showing its superiority over other methods.
Abstract:Mental health diseases affect children's lives and well-beings which have received increased attention since the COVID-19 pandemic. Analyzing psychiatric clinical notes with topic models is critical to evaluate children's mental status over time. However, few topic models are built for longitudinal settings, and they fail to keep consistent topics and capture temporal trajectories for each document. To address these challenges, we develop a longitudinal topic model with time-invariant topics and individualized temporal dependencies on the evolving document metadata. Our model preserves the semantic meaning of discovered topics over time and incorporates heterogeneity among documents. In particular, when documents can be categorized, we propose an unsupervised topics learning approach to maximize topic heterogeneity across different document groups. We also present an efficient variational optimization procedure adapted for the multistage longitudinal setting. In this case study, we apply our method to the psychiatric clinical notes from a large tertiary pediatric hospital in Southern California and achieve a 38% increase in the overall coherence of extracted topics. Our real data analysis reveals that children tend to express more negative emotions during state shutdowns and more positive when schools reopen. Furthermore, it suggests that sexual and gender minority (SGM) children display more pronounced reactions to major COVID-19 events and a greater sensitivity to vaccine-related news than non-SGM children. This study examines the progression of children's mental health during the pandemic and offers clinicians valuable insights to recognize the disparities in children's mental health related to their sexual and gender identities.
Abstract:Mobile health has emerged as a major success in tracking individual health status, due to the popularity and power of smartphones and wearable devices. This has also brought great challenges in handling heterogeneous, multi-resolution data which arise ubiquitously in mobile health due to irregular multivariate measurements collected from individuals. In this paper, we propose an individualized dynamic latent factor model for irregular multi-resolution time series data to interpolate unsampled measurements of time series with low resolution. One major advantage of the proposed method is the capability to integrate multiple irregular time series and multiple subjects by mapping the multi-resolution data to the latent space. In addition, the proposed individualized dynamic latent factor model is applicable to capturing heterogeneous longitudinal information through individualized dynamic latent factors. In theory, we provide the integrated interpolation error bound of the proposed estimator and derive the convergence rate with B-spline approximation methods. Both the simulation studies and the application to smartwatch data demonstrate the superior performance of the proposed method compared to existing methods.
Abstract:Recent advances in dynamic treatment regimes (DTRs) provide powerful optimal treatment searching algorithms, which are tailored to individuals' specific needs and able to maximize their expected clinical benefits. However, existing algorithms could suffer from insufficient sample size under optimal treatments, especially for chronic diseases involving long stages of decision-making. To address these challenges, we propose a novel individualized learning method which estimates the DTR with a focus on prioritizing alignment between the observed treatment trajectory and the one obtained by the optimal regime across decision stages. By relaxing the restriction that the observed trajectory must be fully aligned with the optimal treatments, our approach substantially improves the sample efficiency and stability of inverse probability weighted based methods. In particular, the proposed learning scheme builds a more general framework which includes the popular outcome weighted learning framework as a special case of ours. Moreover, we introduce the notion of stage importance scores along with an attention mechanism to explicitly account for heterogeneity among decision stages. We establish the theoretical properties of the proposed approach, including the Fisher consistency and finite-sample performance bound. Empirically, we evaluate the proposed method in extensive simulated environments and a real case study for COVID-19 pandemic.
Abstract:Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks. Despite their success, existing GNNs suffer from two significant limitations: a lack of interpretability in results due to their black-box nature, and an inability to learn representations of varying orders. To tackle these issues, we propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which is able to sequentially integrate information of various orders, extract knowledge from high-order neighbors, and provide meaningful and interpretable results by identifying influential compact graph structures. In particular, MaGNet consists of two components: an estimation model for the latent representation of complex relationships under graph topology, and an interpretation model that identifies influential nodes, edges, and important node features. Theoretically, we establish the generalization error bound for MaGNet via empirical Rademacher complexity, and showcase its power to represent layer-wise neighborhood mixing. We conduct comprehensive numerical studies using simulated data to demonstrate the superior performance of MaGNet in comparison to several state-of-the-art alternatives. Furthermore, we apply MaGNet to a real-world case study aimed at extracting task-critical information from brain activity data, thereby highlighting its effectiveness in advancing scientific research.
Abstract:We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes, where the objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies. This task faces two primary challenges: providing a comprehensive and rigorous error quantification in CI estimation, and addressing the distributional shift that results from discrepancies between the distribution induced by the target policy and the offline data-generating process. Motivated by an innovative unified error analysis, we jointly quantify the two sources of estimation errors: the misspecification error on modeling marginalized importance weights and the statistical uncertainty due to sampling, within a single interval. This unified framework reveals a previously hidden tradeoff between the errors, which undermines the tightness of the CI. Relying on a carefully designed discriminator function, the proposed estimator achieves a dual purpose: breaking the curse of the tradeoff to attain the tightest possible CI, and adapting the CI to ensure robustness against distributional shifts. Our method is applicable to time-dependent data without assuming any weak dependence conditions via leveraging a local supermartingale/martingale structure. Theoretically, we show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings. The numerical performance of the proposed method is examined in synthetic datasets and an OhioT1DM mobile health study.
Abstract:Batch reinforcement learning (RL) defines the task of learning from a fixed batch of data lacking exhaustive exploration. Worst-case optimality algorithms, which calibrate a value-function model class from logged experience and perform some type of pessimistic evaluation under the learned model, have emerged as a promising paradigm for batch RL. However, contemporary works on this stream have commonly overlooked the hierarchical decision-making structure hidden in the optimization landscape. In this paper, we adopt a game-theoretical viewpoint and model the policy learning diagram as a two-player general-sum game with a leader-follower structure. We propose a novel stochastic gradient-based learning algorithm: StackelbergLearner, in which the leader player updates according to the total derivative of its objective instead of the usual individual gradient, and the follower player makes individual updates and ensures transition-consistent pessimistic reasoning. The derived learning dynamic naturally lends StackelbergLearner to a game-theoretic interpretation and provides a convergence guarantee to differentiable Stackelberg equilibria. From a theoretical standpoint, we provide instance-dependent regret bounds with general function approximation, which shows that our algorithm can learn a best-effort policy that is able to compete against any comparator policy that is covered by batch data. Notably, our theoretical regret guarantees only require realizability without any data coverage and strong function approximation conditions, e.g., Bellman closedness, which is in contrast to prior works lacking such guarantees. Through comprehensive experiments, we find that our algorithm consistently performs as well or better as compared to state-of-the-art methods in batch RL benchmark and real-world datasets.
Abstract:In this paper we propose an active metric learning method for clustering with pairwise constraints. The proposed method actively queries the label of informative instance pairs, while estimating underlying metrics by incorporating unlabeled instance pairs, which leads to a more accurate and efficient clustering process. In particular, we augment the queried constraints by generating more pairwise labels to provide additional information in learning a metric to enhance clustering performance. Furthermore, we increase the robustness of metric learning by updating the learned metric sequentially and penalizing the irrelevant features adaptively. In addition, we propose a novel active query strategy that evaluates the information gain of instance pairs more accurately by incorporating the neighborhood structure, which improves clustering efficiency without extra labeling cost. In theory, we provide a tighter error bound of the proposed metric learning method utilizing augmented queries compared with methods using existing constraints only. Furthermore, we also investigate the improvement using the active query strategy instead of random selection. Numerical studies on simulation settings and real datasets indicate that the proposed method is especially advantageous when the signal-to-noise ratio between significant features and irrelevant features is low.
Abstract:Link prediction infers potential links from observed networks, and is one of the essential problems in network analyses. In contrast to traditional graph representation modeling which only predicts two-way pairwise relations, we propose a novel tensor-based joint network embedding approach on simultaneously encoding pairwise links and hyperlinks onto a latent space, which captures the dependency between pairwise and multi-way links in inferring potential unobserved hyperlinks. The major advantage of the proposed embedding procedure is that it incorporates both the pairwise relationships and subgroup-wise structure among nodes to capture richer network information. In addition, the proposed method introduces a hierarchical dependency among links to infer potential hyperlinks, and leads to better link prediction. In theory we establish the estimation consistency for the proposed embedding approach, and provide a faster convergence rate compared to link prediction utilizing pairwise links or hyperlinks only. Numerical studies on both simulation settings and Facebook ego-networks indicate that the proposed method improves both hyperlink and pairwise link prediction accuracy compared to existing link prediction algorithms.