Abstract:Information from related source studies can often enhance the findings of a target study. However, the distribution shift between target and source studies can severely impact the efficiency of knowledge transfer. In the high-dimensional regression setting, existing transfer approaches mainly focus on the parameter shift. In this paper, we focus on the high-dimensional quantile regression with knowledge transfer under three types of distribution shift: parameter shift, covariate shift, and residual shift. We propose a novel transferable set and a new transfer framework to address the above three discrepancies. Non-asymptotic estimation error bounds and source detection consistency are established to validate the availability and superiority of our method in the presence of distribution shift. Additionally, an orthogonal debiased approach is proposed for statistical inference with knowledge transfer, leading to sharper asymptotic results. Extensive simulation results as well as real data applications further demonstrate the effectiveness of our proposed procedure.
Abstract:The popularity of transfer learning stems from the fact that it can borrow information from useful auxiliary datasets. Existing statistical transfer learning methods usually adopt a global similarity measure between the source data and the target data, which may lead to inefficiency when only local information is shared. In this paper, we propose a novel Bayesian transfer learning method named "CONCERT" to allow robust local information transfer for high-dimensional data analysis. A novel conditional spike-and-slab prior is introduced in the joint distribution of target and source parameters for information transfer. By incorporating covariate-specific priors, we can characterize the local similarities and make the sources work collaboratively to help improve the performance on the target. Distinguished from existing work, CONCERT is a one-step procedure, which achieves variable selection and information transfer simultaneously. Variable selection consistency is established for our CONCERT. To make our algorithm scalable, we adopt the variational Bayes framework to facilitate implementation. Extensive experiments and a genetic data analysis demonstrate the validity and the advantage of CONCERT over existing cutting-edge transfer learning methods. We also extend our CONCERT to the logistical models with numerical studies showing its superiority over other methods.