Abstract:Mental health diseases affect children's lives and well-beings which have received increased attention since the COVID-19 pandemic. Analyzing psychiatric clinical notes with topic models is critical to evaluate children's mental status over time. However, few topic models are built for longitudinal settings, and they fail to keep consistent topics and capture temporal trajectories for each document. To address these challenges, we develop a longitudinal topic model with time-invariant topics and individualized temporal dependencies on the evolving document metadata. Our model preserves the semantic meaning of discovered topics over time and incorporates heterogeneity among documents. In particular, when documents can be categorized, we propose an unsupervised topics learning approach to maximize topic heterogeneity across different document groups. We also present an efficient variational optimization procedure adapted for the multistage longitudinal setting. In this case study, we apply our method to the psychiatric clinical notes from a large tertiary pediatric hospital in Southern California and achieve a 38% increase in the overall coherence of extracted topics. Our real data analysis reveals that children tend to express more negative emotions during state shutdowns and more positive when schools reopen. Furthermore, it suggests that sexual and gender minority (SGM) children display more pronounced reactions to major COVID-19 events and a greater sensitivity to vaccine-related news than non-SGM children. This study examines the progression of children's mental health during the pandemic and offers clinicians valuable insights to recognize the disparities in children's mental health related to their sexual and gender identities.
Abstract:Recent advances in dynamic treatment regimes (DTRs) provide powerful optimal treatment searching algorithms, which are tailored to individuals' specific needs and able to maximize their expected clinical benefits. However, existing algorithms could suffer from insufficient sample size under optimal treatments, especially for chronic diseases involving long stages of decision-making. To address these challenges, we propose a novel individualized learning method which estimates the DTR with a focus on prioritizing alignment between the observed treatment trajectory and the one obtained by the optimal regime across decision stages. By relaxing the restriction that the observed trajectory must be fully aligned with the optimal treatments, our approach substantially improves the sample efficiency and stability of inverse probability weighted based methods. In particular, the proposed learning scheme builds a more general framework which includes the popular outcome weighted learning framework as a special case of ours. Moreover, we introduce the notion of stage importance scores along with an attention mechanism to explicitly account for heterogeneity among decision stages. We establish the theoretical properties of the proposed approach, including the Fisher consistency and finite-sample performance bound. Empirically, we evaluate the proposed method in extensive simulated environments and a real case study for COVID-19 pandemic.