Abstract:The precise quantification of nucleic acids is pivotal in molecular biology, underscored by the rising prominence of nucleic acid amplification tests (NAAT) in diagnosing infectious diseases and conducting genomic studies. This review examines recent advancements in digital Polymerase Chain Reaction (dPCR) and digital Loop-mediated Isothermal Amplification (dLAMP), which surpass the limitations of traditional NAAT by offering absolute quantification and enhanced sensitivity. In this review, we summarize the compelling advancements of dNNAT in addressing pressing public health issues, especially during the COVID-19 pandemic. Further, we explore the transformative role of artificial intelligence (AI) in enhancing dNAAT image analysis, which not only improves efficiency and accuracy but also addresses traditional constraints related to cost, complexity, and data interpretation. In encompassing the state-of-the-art (SOTA) development and potential of both software and hardware, the all-encompassing Point-of-Care Testing (POCT) systems cast new light on benefits including higher throughput, label-free detection, and expanded multiplex analyses. While acknowledging the enhancement of AI-enhanced dNAAT technology, this review aims to both fill critical gaps in the existing technologies through comparative assessments and offer a balanced perspective on the current trajectory, including attendant challenges and future directions. Leveraging AI, next-generation dPCR and dLAMP technologies promises integration into clinical practice, improving personalized medicine, real-time epidemic surveillance, and global diagnostic accessibility.
Abstract:In this paper, we present an empirical study introducing a nuanced evaluation framework for text-to-image (T2I) generative models, applied to human image synthesis. Our framework categorizes evaluations into two distinct groups: first, focusing on image qualities such as aesthetics and realism, and second, examining text conditions through concept coverage and fairness. We introduce an innovative aesthetic score prediction model that assesses the visual appeal of generated images and unveils the first dataset marked with low-quality regions in generated human images to facilitate automatic defect detection. Our exploration into concept coverage probes the model's effectiveness in interpreting and rendering text-based concepts accurately, while our analysis of fairness reveals biases in model outputs, with an emphasis on gender, race, and age. While our study is grounded in human imagery, this dual-faceted approach is designed with the flexibility to be applicable to other forms of image generation, enhancing our understanding of generative models and paving the way to the next generation of more sophisticated, contextually aware, and ethically attuned generative models. We will release our code, the data used for evaluating generative models and the dataset annotated with defective areas soon.