Abstract:Traditional technology mapping suffers from systemic inaccuracies in delay estimation due to its reliance on abstract, technology-agnostic delay models that fail to capture the nuanced timing behavior behavior of real post-mapping circuits. To address this fundamental limitation, we introduce GPA(graph neural network (GNN)-based Path-Aware multi-view circuit learning), a novel GNN framework that learns precise, data-driven delay predictions by synergistically fusing three complementary views of circuit structure: And-Inverter Graphs (AIGs)-based functional encoding, post-mapping technology emphasizes critical timing paths. Trained exclusively on real cell delays extracted from critical paths of industrial-grade post-mapping netlists, GPA learns to classify cut delays with unprecedented accuracy, directly informing smarter mapping decisions. Evaluated on the 19 EPFL combinational benchmarks, GPA achieves 19.9%, 2.1% and 4.1% average delay reduction over the conventional heuristics methods (techmap, MCH) and the prior state-of-the-art ML-based approach SLAP, respectively-without compromising area efficiency.




Abstract:This paper introduces DeepCircuitX, a comprehensive repository-level dataset designed to advance RTL (Register Transfer Level) code understanding, generation, and power-performance-area (PPA) analysis. Unlike existing datasets that are limited to either file-level RTL code or physical layout data, DeepCircuitX provides a holistic, multilevel resource that spans repository, file, module, and block-level RTL code. This structure enables more nuanced training and evaluation of large language models (LLMs) for RTL-specific tasks. DeepCircuitX is enriched with Chain of Thought (CoT) annotations, offering detailed descriptions of functionality and structure at multiple levels. These annotations enhance its utility for a wide range of tasks, including RTL code understanding, generation, and completion. Additionally, the dataset includes synthesized netlists and PPA metrics, facilitating early-stage design exploration and enabling accurate PPA prediction directly from RTL code. We demonstrate the dataset's effectiveness on various LLMs finetuned with our dataset and confirm the quality with human evaluations. Our results highlight DeepCircuitX as a critical resource for advancing RTL-focused machine learning applications in hardware design automation.Our data is available at https://zeju.gitbook.io/lcm-team.