Abstract:With the advancement of pre-trained vision-language (VL) models, enhancing the alignment between visual and linguistic modalities in downstream tasks has emerged as a critical challenge. Different from existing fine-tuning methods that add extra modules to these two modalities, we investigate whether the frozen model can be fine-tuned by customized noise. Our approach is motivated by the scientific study of beneficial noise, namely Positive-incentive Noise (Pi-noise or $\pi$-noise) , which quantitatively analyzes the impact of noise. It therefore implies a new scheme to learn beneficial noise distribution that can be employed to fine-tune VL models. Focusing on few-shot classification tasks based on CLIP, we reformulate the inference process of CLIP and apply variational inference, demonstrating how to generate $\pi$-noise towards visual and linguistic modalities. Then, we propose Positive-incentive Noise Injector (PiNI), which can fine-tune CLIP via injecting noise into both visual and text encoders. Since the proposed method can learn the distribution of beneficial noise, we can obtain more diverse embeddings of vision and language to better align these two modalities for specific downstream tasks within limited computational resources. We evaluate different noise incorporation approaches and network architectures of PiNI. The evaluation across 11 datasets demonstrates its effectiveness.
Abstract:Graph contrastive learning (GCL) aims to learn representations from unlabeled graph data in a self-supervised manner and has developed rapidly in recent years. However, edgelevel contrasts are not well explored by most existing GCL methods. Most studies in GCL only regard edges as auxiliary information while updating node features. One of the primary obstacles of edge-based GCL is the heavy computation burden. To tackle this issue, we propose a model that can efficiently learn edge features for GCL, namely AugmentationFree Edge Contrastive Learning (AFECL) to achieve edgeedge contrast. AFECL depends on no augmentation consisting of two parts. Firstly, we design a novel edge feature generation method, where edge features are computed by embedding concatenation of their connected nodes. Secondly, an edge contrastive learning scheme is developed, where edges connecting the same nodes are defined as positive pairs, and other edges are defined as negative pairs. Experimental results show that compared with recent state-of-the-art GCL methods or even some supervised GNNs, AFECL achieves SOTA performance on link prediction and semi-supervised node classification of extremely scarce labels. The source code is available at https://github.com/YujunLi361/AFECL.
Abstract:Graph contrastive learning (GCL) has been widely used as an effective self-supervised learning method for graph representation learning. However, how to apply adequate and stable graph augmentation to generating proper views for contrastive learning remains an essential problem. Dropping edges is a primary augmentation in GCL while adding edges is not a common method due to its unstable performance. To our best knowledge, there is no theoretical analysis to study why dropping edges usually outperforms adding edges. To answer this question, we introduce a new metric, namely Error Passing Rate (EPR), to quantify how a graph fits the network. Inspired by the theoretical conclusions, we propose a novel GCL algorithm, Error-PAssing-based Graph Contrastive Learning (EPAGCL), which uses both edge adding and edge dropping as its augmentation. To be specific, we generate views by adding and dropping edges according to the weights derived from EPR. Extensive experiments on various real-world datasets are conducted to validate the correctness of our theoretical analysis and the effectiveness of our proposed algorithm.
Abstract:Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
Abstract:Traffic signs play a key role in assisting autonomous driving systems (ADS) by enabling the assessment of vehicle behavior in compliance with traffic regulations and providing navigation instructions. However, current works are limited to basic sign understanding without considering the egocentric vehicle's spatial position, which fails to support further regulation assessment and direction navigation. Following the above issues, we introduce a new task: traffic sign interpretation from the vehicle's first-person view, referred to as TSI-FPV. Meanwhile, we develop a traffic guidance assistant (TGA) scenario application to re-explore the role of traffic signs in ADS as a complement to popular autonomous technologies (such as obstacle perception). Notably, TGA is not a replacement for electronic map navigation; rather, TGA can be an automatic tool for updating it and complementing it in situations such as offline conditions or temporary sign adjustments. Lastly, a spatial and semantic logic-aware stepwise reasoning pipeline (SignEye) is constructed to achieve the TSI-FPV and TGA, and an application-specific dataset (Traffic-CN) is built. Experiments show that TSI-FPV and TGA are achievable via our SignEye trained on Traffic-CN. The results also demonstrate that the TGA can provide complementary information to ADS beyond existing popular autonomous technologies.
Abstract:Localization of the craniofacial landmarks from lateral cephalograms is a fundamental task in cephalometric analysis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Cephalometric Landmark Detection (CL-Detection)" dataset, which is the largest publicly available and comprehensive dataset for cephalometric landmark detection. This multi-center and multi-vendor dataset includes 600 lateral X-ray images with 38 landmarks acquired with different equipment from three medical centers. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go for cephalometric landmark detection. Following the 2023 MICCAI CL-Detection Challenge, we report the results of the top ten research groups using deep learning methods. Results show that the best methods closely approximate the expert analysis, achieving a mean detection rate of 75.719% and a mean radial error of 1.518 mm. While there is room for improvement, these findings undeniably open the door to highly accurate and fully automatic location of craniofacial landmarks. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for the community to benchmark future algorithm developments at https://cl-detection2023.grand-challenge.org/.
Abstract:Inspired by the idea of Positive-incentive Noise (Pi-Noise or $\pi$-Noise) that aims at learning the reliable noise beneficial to tasks, we scientifically investigate the connection between contrastive learning and $\pi$-noise in this paper. By converting the contrastive loss to an auxiliary Gaussian distribution to quantitatively measure the difficulty of the specific contrastive model under the information theory framework, we properly define the task entropy, the core concept of $\pi$-noise, of contrastive learning. It is further proved that the predefined data augmentation in the standard contrastive learning paradigm can be regarded as a kind of point estimation of $\pi$-noise. Inspired by the theoretical study, a framework that develops a $\pi$-noise generator to learn the beneficial noise (instead of estimation) as data augmentations for contrast is proposed. The designed framework can be applied to diverse types of data and is also completely compatible with the existing contrastive models. From the visualization, we surprisingly find that the proposed method successfully learns effective augmentations.
Abstract:Computer-aided design (CAD) tools are increasingly popular in modern dental practice, particularly for treatment planning or comprehensive prognosis evaluation. In particular, the 2D panoramic X-ray image efficiently detects invisible caries, impacted teeth and supernumerary teeth in children, while the 3D dental cone beam computed tomography (CBCT) is widely used in orthodontics and endodontics due to its low radiation dose. However, there is no open-access 2D public dataset for children's teeth and no open 3D dental CBCT dataset, which limits the development of automatic algorithms for segmenting teeth and analyzing diseases. The Semi-supervised Teeth Segmentation (STS) Challenge, a pioneering event in tooth segmentation, was held as a part of the MICCAI 2023 ToothFairy Workshop on the Alibaba Tianchi platform. This challenge aims to investigate effective semi-supervised tooth segmentation algorithms to advance the field of dentistry. In this challenge, we provide two modalities including the 2D panoramic X-ray images and the 3D CBCT tooth volumes. In Task 1, the goal was to segment tooth regions in panoramic X-ray images of both adult and pediatric teeth. Task 2 involved segmenting tooth sections using CBCT volumes. Limited labelled images with mostly unlabelled ones were provided in this challenge prompt using semi-supervised algorithms for training. In the preliminary round, the challenge received registration and result submission by 434 teams, with 64 advancing to the final round. This paper summarizes the diverse methods employed by the top-ranking teams in the STS MICCAI 2023 Challenge.
Abstract:Although the convolutional neural network (CNN) has achieved excellent performance in vision tasks by extracting the intra-sample representation, it will take a higher training expense because of stacking numerous convolutional layers. Recently, as the bilinear models, graph neural networks (GNN) have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, it cannot be directly utilized on non-graph data due to the lack of graph structure and has high inference latency on large-scale scenarios. Inspired by these complementary strengths and weaknesses, \textit{we discuss a natural question, how to bridge these two heterogeneous networks?} In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. Firstly, to break the limitations of GNN, a differentiable sparse graph learning module is designed as the head of networks to dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge from CNN to GNN and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of distilled ``boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
Abstract:Spectral clustering and its extensions usually consist of two steps: (1) constructing a graph and computing the relaxed solution; (2) discretizing relaxed solutions. Although the former has been extensively investigated, the discretization techniques are mainly heuristic methods, e.g., k-means, spectral rotation. Unfortunately, the goal of the existing methods is not to find a discrete solution that minimizes the original objective. In other words, the primary drawback is the neglect of the original objective when computing the discrete solution. Inspired by the first-order optimization algorithms, we propose to develop a first-order term to bridge the original problem and discretization algorithm, which is the first non-heuristic to the best of our knowledge. Since the non-heuristic method is aware of the original graph cut problem, the final discrete solution is more reliable and achieves the preferable loss value. We also theoretically show that the continuous optimum is beneficial to discretization algorithms though simply finding its closest discrete solution is an existing heuristic algorithm which is also unreliable. Sufficient experiments significantly show the superiority of our method.