Abstract:Localization of the craniofacial landmarks from lateral cephalograms is a fundamental task in cephalometric analysis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Cephalometric Landmark Detection (CL-Detection)" dataset, which is the largest publicly available and comprehensive dataset for cephalometric landmark detection. This multi-center and multi-vendor dataset includes 600 lateral X-ray images with 38 landmarks acquired with different equipment from three medical centers. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go for cephalometric landmark detection. Following the 2023 MICCAI CL-Detection Challenge, we report the results of the top ten research groups using deep learning methods. Results show that the best methods closely approximate the expert analysis, achieving a mean detection rate of 75.719% and a mean radial error of 1.518 mm. While there is room for improvement, these findings undeniably open the door to highly accurate and fully automatic location of craniofacial landmarks. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for the community to benchmark future algorithm developments at https://cl-detection2023.grand-challenge.org/.
Abstract:Inspired by the idea of Positive-incentive Noise (Pi-Noise or $\pi$-Noise) that aims at learning the reliable noise beneficial to tasks, we scientifically investigate the connection between contrastive learning and $\pi$-noise in this paper. By converting the contrastive loss to an auxiliary Gaussian distribution to quantitatively measure the difficulty of the specific contrastive model under the information theory framework, we properly define the task entropy, the core concept of $\pi$-noise, of contrastive learning. It is further proved that the predefined data augmentation in the standard contrastive learning paradigm can be regarded as a kind of point estimation of $\pi$-noise. Inspired by the theoretical study, a framework that develops a $\pi$-noise generator to learn the beneficial noise (instead of estimation) as data augmentations for contrast is proposed. The designed framework can be applied to diverse types of data and is also completely compatible with the existing contrastive models. From the visualization, we surprisingly find that the proposed method successfully learns effective augmentations.
Abstract:Computer-aided design (CAD) tools are increasingly popular in modern dental practice, particularly for treatment planning or comprehensive prognosis evaluation. In particular, the 2D panoramic X-ray image efficiently detects invisible caries, impacted teeth and supernumerary teeth in children, while the 3D dental cone beam computed tomography (CBCT) is widely used in orthodontics and endodontics due to its low radiation dose. However, there is no open-access 2D public dataset for children's teeth and no open 3D dental CBCT dataset, which limits the development of automatic algorithms for segmenting teeth and analyzing diseases. The Semi-supervised Teeth Segmentation (STS) Challenge, a pioneering event in tooth segmentation, was held as a part of the MICCAI 2023 ToothFairy Workshop on the Alibaba Tianchi platform. This challenge aims to investigate effective semi-supervised tooth segmentation algorithms to advance the field of dentistry. In this challenge, we provide two modalities including the 2D panoramic X-ray images and the 3D CBCT tooth volumes. In Task 1, the goal was to segment tooth regions in panoramic X-ray images of both adult and pediatric teeth. Task 2 involved segmenting tooth sections using CBCT volumes. Limited labelled images with mostly unlabelled ones were provided in this challenge prompt using semi-supervised algorithms for training. In the preliminary round, the challenge received registration and result submission by 434 teams, with 64 advancing to the final round. This paper summarizes the diverse methods employed by the top-ranking teams in the STS MICCAI 2023 Challenge.
Abstract:Although the convolutional neural network (CNN) has achieved excellent performance in vision tasks by extracting the intra-sample representation, it will take a higher training expense because of stacking numerous convolutional layers. Recently, as the bilinear models, graph neural networks (GNN) have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, it cannot be directly utilized on non-graph data due to the lack of graph structure and has high inference latency on large-scale scenarios. Inspired by these complementary strengths and weaknesses, \textit{we discuss a natural question, how to bridge these two heterogeneous networks?} In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. Firstly, to break the limitations of GNN, a differentiable sparse graph learning module is designed as the head of networks to dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge from CNN to GNN and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of distilled ``boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
Abstract:Spectral clustering and its extensions usually consist of two steps: (1) constructing a graph and computing the relaxed solution; (2) discretizing relaxed solutions. Although the former has been extensively investigated, the discretization techniques are mainly heuristic methods, e.g., k-means, spectral rotation. Unfortunately, the goal of the existing methods is not to find a discrete solution that minimizes the original objective. In other words, the primary drawback is the neglect of the original objective when computing the discrete solution. Inspired by the first-order optimization algorithms, we propose to develop a first-order term to bridge the original problem and discretization algorithm, which is the first non-heuristic to the best of our knowledge. Since the non-heuristic method is aware of the original graph cut problem, the final discrete solution is more reliable and achieves the preferable loss value. We also theoretically show that the continuous optimum is beneficial to discretization algorithms though simply finding its closest discrete solution is an existing heuristic algorithm which is also unreliable. Sufficient experiments significantly show the superiority of our method.
Abstract:A large number of works aim to alleviate the impact of noise due to an underlying conventional assumption of the negative role of noise. However, some existing works show that the assumption does not always hold. In this paper, we investigate how to benefit the classical models by random noise under the framework of Positive-incentive Noise (Pi-Noise). Since the ideal objective of Pi-Noise is intractable, we propose to optimize its variational bound instead, namely variational Pi-Noise (VPN). With the variational inference, a VPN generator implemented by neural networks is designed for enhancing base models and simplifying the inference of base models, without changing the architecture of base models. Benefiting from the independent design of base models and VPN generators, the VPN generator can work with most existing models. From the experiments, it is shown that the proposed VPN generator can improve the base models. It is appealing that the trained variational VPN generator prefers to blur the irrelevant ingredients in complicated images, which meets our expectations.
Abstract:Graph neural networks (GNN) suffer from severe inefficiency. It is mainly caused by the exponential growth of node dependency with the increase of layers. It extremely limits the application of stochastic optimization algorithms so that the training of GNN is usually time-consuming. To address this problem, we propose to decouple a multi-layer GNN as multiple simple modules for more efficient training, which is comprised of classical forward training (FT)and designed backward training (BT). Under the proposed framework, each module can be trained efficiently in FT by stochastic algorithms without distortion of graph information owing to its simplicity. To avoid the only unidirectional information delivery of FT and sufficiently train shallow modules with the deeper ones, we develop a backward training mechanism that makes the former modules perceive the latter modules. The backward training introduces the reversed information delivery into the decoupled modules as well as the forward information delivery. To investigate how the decoupling and greedy training affect the representational capacity, we theoretically prove that the error produced by linear modules will not accumulate on unsupervised tasks in most cases. The theoretical and experimental results show that the proposed framework is highly efficient with reasonable performance.
Abstract:Admittedly, Graph Convolution Network (GCN) has achieved excellent results on graph datasets such as social networks, citation networks, etc. However, softmax used as the decision layer in these frameworks is generally optimized with thousands of iterations via gradient descent. Furthermore, due to ignoring the inner distribution of the graph nodes, the decision layer might lead to an unsatisfactory performance in semi-supervised learning with less label support. To address the referred issues, we propose a novel graph deep model with a non-gradient decision layer for graph mining. Firstly, manifold learning is unified with label local-structure preservation to capture the topological information of the nodes. Moreover, owing to the non-gradient property, closed-form solutions is achieved to be employed as the decision layer for GCN. Particularly, a joint optimization method is designed for this graph model, which extremely accelerates the convergence of the model. Finally, extensive experiments show that the proposed model has achieved state-of-the-art performance compared to the current models.
Abstract:The existing matrix completion methods focus on optimizing the relaxation of rank function such as nuclear norm, Schatten-p norm, etc. They usually need many iterations to converge. Moreover, only the low-rank property of matrices is utilized in most existing models and several methods that incorporate other knowledge are quite time-consuming in practice. To address these issues, we propose a novel non-convex surrogate that can be optimized by closed-form solutions, such that it empirically converges within dozens of iterations. Besides, the optimization is parameter-free and the convergence is proved. Compared with the relaxation of rank, the surrogate is motivated by optimizing an upper-bound of rank. We theoretically validate that it is equivalent to the existing matrix completion models. Besides the low-rank assumption, we intend to exploit the column-wise correlation for matrix completion, and thus an adaptive correlation learning, which is scaling-invariant, is developed. More importantly, after incorporating the correlation learning, the model can be still solved by closed-form solutions such that it still converges fast. Experiments show the effectiveness of the non-convex surrogate and adaptive correlation learning.
Abstract:Graph-based clustering plays an important role in clustering tasks. As graph convolution network (GCN), a variant of neural networks on graph-type data, has achieved impressive performance, it is attractive to find whether GCNs can be used to augment the graph-based clustering methods on non-graph data, i.e., general data. However, given $n$ samples, the graph-based clustering methods usually need at least $O(n^2)$ time to build graphs and the graph convolution requires nearly $O(n^2)$ for a dense graph and $O(|\mathcal{E}|)$ for a sparse one with $|\mathcal{E}|$ edges. In other words, both graph-based clustering and GCNs suffer from severe inefficiency problems. To tackle this problem and further employ GCN to promote the capacity of graph-based clustering, we propose a novel clustering method, AnchorGAE. As the graph structure is not provided in general clustering scenarios, we first show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build GCNs. Anchors are generated from the original data to construct a bipartite graph such that the computational complexity of graph convolution is reduced from $O(n^2)$ and $O(|\mathcal{E}|)$ to $O(n)$. The succeeding steps for clustering can be easily designed as $O(n)$ operations. Interestingly, the anchors naturally lead to a siamese GCN architecture. The bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data. Eventually, we theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.