Abstract:Autonomous artificial intelligence (AI) agents have emerged as promising protocols for automatically understanding the language-based environment, particularly with the exponential development of large language models (LLMs). However, a fine-grained, comprehensive understanding of multimodal environments remains under-explored. This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training. We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment. Specifically, we design a cerebral language agent that integrates LLM with memory, planning, and interaction with XR tools and a vision-language agent, enabling agents to decide their actions based on past experiences. Furthermore, we introduce LEGO-MRTA, a multimodal fine-grained assembly dialogue dataset synthesized automatically in the workflow served by a commercial LLM. This dataset comprises multimodal instruction manuals, conversations, XR responses, and vision question answering. Last, we present several prevailing open-resource LLMs as benchmarks, assessing their performance with and without fine-tuning on the proposed dataset. We anticipate that the broader impact of this workflow will advance the development of smarter assistants for seamless user interaction in XR environments, fostering research in both AI and HCI communities.
Abstract:As Federated Learning (FL) has gained increasing attention, it has become widely acknowledged that straightforwardly applying stochastic gradient descent (SGD) on the overall framework when learning over a sequence of tasks results in the phenomenon known as ``catastrophic forgetting''. Consequently, much FL research has centered on devising federated increasing learning methods to alleviate forgetting while augmenting knowledge. On the other hand, forgetting is not always detrimental. The selective amnesia, also known as federated unlearning, which entails the elimination of specific knowledge, can address privacy concerns and create additional ``space'' for acquiring new knowledge. However, there is a scarcity of extensive surveys that encompass recent advancements and provide a thorough examination of this issue. In this manuscript, we present an extensive survey on the topic of knowledge editing (augmentation/removal) in Federated Learning, with the goal of summarizing the state-of-the-art research and expanding the perspective for various domains. Initially, we introduce an integrated paradigm, referred to as Federated Editable Learning (FEL), by reevaluating the entire lifecycle of FL. Secondly, we provide a comprehensive overview of existing methods, evaluate their position within the proposed paradigm, and emphasize the current challenges they face. Lastly, we explore potential avenues for future research and identify unresolved issues.
Abstract:Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.
Abstract:Federated Learning (FL) is an emerging paradigm that enables distributed users to collaboratively and iteratively train machine learning models without sharing their private data. Motivated by the effectiveness and robustness of self-attention-based architectures, researchers are turning to using pre-trained Transformers (i.e., foundation models) instead of traditional convolutional neural networks in FL to leverage their excellent transfer learning capabilities. Despite recent progress, how pre-trained Transformer models play a role in FL remains obscure, that is, how to efficiently fine-tune these pre-trained models in FL and how FL users could benefit from this new paradigm. In this paper, we explore this issue and demonstrate that the fine-tuned Transformers achieve extraordinary performance on FL, and that the lightweight fine-tuning method facilitates a fast convergence rate and low communication costs. Concretely, we conduct a rigorous empirical study of three tuning methods (i.e., modifying the input, adding extra modules, and adjusting the backbone) using two types of pre-trained models (i.e., vision-language models and vision models) for FL. Our experiments show that 1) Fine-tuning the bias term of the backbone performs best when relying on a strong pre-trained model; 2) The vision-language model (e.g., CLIP) outperforms the pure vision model (e.g., ViT) and is more robust to the few-shot settings; 3) Compared to pure local training, FL with pre-trained models has a higher accuracy because it alleviates the problem of over-fitting. We will release our code and encourage further exploration of pre-trained Transformers and FL.
Abstract:Multimodal learning (MML) aims to jointly exploit the common priors of different modalities to compensate for their inherent limitations. However, existing MML methods often optimize a uniform objective for different modalities, leading to the notorious "modality imbalance" problem and counterproductive MML performance. To address the problem, some existing methods modulate the learning pace based on the fused modality, which is dominated by the better modality and eventually results in a limited improvement on the worse modal. To better exploit the features of multimodal, we propose Prototypical Modality Rebalance (PMR) to perform stimulation on the particular slow-learning modality without interference from other modalities. Specifically, we introduce the prototypes that represent general features for each class, to build the non-parametric classifiers for uni-modal performance evaluation. Then, we try to accelerate the slow-learning modality by enhancing its clustering toward prototypes. Furthermore, to alleviate the suppression from the dominant modality, we introduce a prototype-based entropy regularization term during the early training stage to prevent premature convergence. Besides, our method only relies on the representations of each modality and without restrictions from model structures and fusion methods, making it with great application potential for various scenarios.
Abstract:Self-attention mechanisms, especially multi-head self-attention (MSA), have achieved great success in many fields such as computer vision and natural language processing. However, many existing vision transformer (ViT) works simply inherent transformer designs from NLP to adapt vision tasks, while ignoring the fundamental difference between ``how MSA works in image and language settings''. Language naturally contains highly semantic structures that are directly interpretable by humans. Its basic unit (word) is discrete without redundant information, which readily supports interpretable studies on MSA mechanisms of language transformer. In contrast, visual data exhibits a fundamentally different structure: Its basic unit (pixel) is a natural low-level representation with significant redundancies in the neighbourhood, which poses obvious challenges to the interpretability of MSA mechanism in ViT. In this paper, we introduce a typical image processing technique, i.e., scale-invariant feature transforms (SIFTs), which maps low-level representations into mid-level spaces, and annotates extensive discrete keypoints with semantically rich information. Next, we construct a weighted patch interrelation analysis based on SIFT keypoints to capture the attention patterns hidden in patches with different semantic concentrations Interestingly, we find this quantitative analysis is not only an effective complement to the interpretability of MSA mechanisms in ViT, but can also be applied to 1) spurious correlation discovery and ``prompting'' during model inference, 2) and guided model pre-training acceleration. Experimental results on both applications show significant advantages over baselines, demonstrating the efficacy of our method.
Abstract:Quick global aggregation of effective distributed parameters is crucial to federated learning (FL), which requires adequate bandwidth for parameters communication and sufficient user data for local training. Otherwise, FL may cost excessive training time for convergence and produce inaccurate models. In this paper, we propose a brand-new FL framework, PromptFL, that replaces the federated model training with the federated prompt training, i.e., let federated participants train prompts instead of a shared model, to simultaneously achieve the efficient global aggregation and local training on insufficient data by exploiting the power of foundation models (FM) in a distributed way. PromptFL ships an off-the-shelf FM, i.e., CLIP, to distributed clients who would cooperatively train shared soft prompts based on very few local data. Since PromptFL only needs to update the prompts instead of the whole model, both the local training and the global aggregation can be significantly accelerated. And FM trained over large scale data can provide strong adaptation capability to distributed users tasks with the trained soft prompts. We empirically analyze the PromptFL via extensive experiments, and show its superiority in terms of system feasibility, user privacy, and performance.
Abstract:Recent studies have shown that the training samples can be recovered from gradients, which are called Gradient Inversion (GradInv) attacks. However, there remains a lack of extensive surveys covering recent advances and thorough analysis of this issue. In this paper, we present a comprehensive survey on GradInv, aiming to summarize the cutting-edge research and broaden the horizons for different domains. Firstly, we propose a taxonomy of GradInv attacks by characterizing existing attacks into two paradigms: iteration- and recursion-based attacks. In particular, we dig out some critical ingredients from the iteration-based attacks, including data initialization, model training and gradient matching. Second, we summarize emerging defense strategies against GradInv attacks. We find these approaches focus on three perspectives covering data obscuration, model improvement and gradient protection. Finally, we discuss some promising directions and open problems for further research.
Abstract:Recently, the enactment of privacy regulations has promoted the rise of machine unlearning paradigm. Most existing studies mainly focus on removing unwanted data samples from a learnt model. Yet we argue that they remove overmuch information of data samples from latent feature space, which is far beyond the sensitive feature scope that genuinely needs to be unlearned. In this paper, we investigate a vertical unlearning mode, aiming at removing only sensitive information from latent feature space. First, we introduce intuitive and formal definitions for this unlearning and show its orthogonal relationship with existing horizontal unlearning. Secondly, given the fact of lacking general solutions to vertical unlearning, we introduce a ground-breaking solution based on representation detachment, where the task-related information is encouraged to retain while the sensitive information is progressively forgotten. Thirdly, observing that some computation results during representation detachment are hard to obtain in practice, we propose an approximation with an upper bound to estimate it, with rigorous theoretical analysis. We validate our method by spanning several datasets and models with prevailing performance. We envision this work as a necessity for future machine unlearning system and an essential component of the latest privacy-related legislation.
Abstract:We explore the problem of selectively forgetting categories from trained CNN classification models in the federated learning (FL). Given that the data used for training cannot be accessed globally in FL, our insights probe deep into the internal influence of each channel. Through the visualization of feature maps activated by different channels, we observe that different channels have a varying contribution to different categories in image classification. Inspired by this, we propose a method for scrubbing the model clean of information about particular categories. The method does not require retraining from scratch, nor global access to the data used for training. Instead, we introduce the concept of Term Frequency Inverse Document Frequency (TF-IDF) to quantize the class discrimination of channels. Channels with high TF-IDF scores have more discrimination on the target categories and thus need to be pruned to unlearn. The channel pruning is followed by a fine-tuning process to recover the performance of the pruned model. Evaluated on CIFAR10 dataset, our method accelerates the speed of unlearning by 8.9x for the ResNet model, and 7.9x for the VGG model under no degradation in accuracy, compared to retraining from scratch. For CIFAR100 dataset, the speedups are 9.9x and 8.4x, respectively. We envision this work as a complementary block for FL towards compliance with legal and ethical criteria.