Victor
Abstract:Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendations, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity to the item embedding. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial scenarios. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Moreover, it has been successfully deployed in a real-world e-commerce platform, processing millions of product listings daily while supporting dynamic, large-scale attribute taxonomies.
Abstract:Approximately 200 million individuals around the world suffer from varying degrees of visual impairment, making it crucial to leverage AI technology to offer walking assistance for these people. With the recent progress of vision-language models (VLMs), employing VLMs to improve this field has emerged as a popular research topic. However, most existing methods are studied on self-built question-answering datasets, lacking a unified training and testing benchmark for walk guidance. Moreover, in blind walking task, it is necessary to perform real-time streaming video parsing and generate concise yet informative reminders, which poses a great challenge for VLMs that suffer from redundant responses and low inference efficiency. In this paper, we firstly release a diverse, extensive, and unbiased walking awareness dataset, containing 12k video-manual annotation pairs from Europe and Asia to provide a fair training and testing benchmark for blind walking task. Furthermore, a WalkVLM model is proposed, which employs chain of thought for hierarchical planning to generate concise but informative reminders and utilizes temporal-aware adaptive prediction to reduce the temporal redundancy of reminders. Finally, we have established a solid benchmark for blind walking task and verified the advantages of WalkVLM in stream video processing for this task compared to other VLMs. Our dataset and code will be released at anonymous link https://walkvlm2024.github.io.
Abstract:High-quality animated stickers usually contain transparent channels, which are often ignored by current video generation models. To generate fine-grained animated transparency channels, existing methods can be roughly divided into video matting algorithms and diffusion-based algorithms. The methods based on video matting have poor performance in dealing with semi-open areas in stickers, while diffusion-based methods are often used to model a single image, which will lead to local flicker when modeling animated stickers. In this paper, we firstly propose an ILDiff method to generate animated transparent channels through implicit layout distillation, which solves the problems of semi-open area collapse and no consideration of temporal information in existing methods. Secondly, we create the Transparent Animated Sticker Dataset (TASD), which contains 0.32M high-quality samples with transparent channel, to provide data support for related fields. Extensive experiments demonstrate that ILDiff can produce finer and smoother transparent channels compared to other methods such as Matting Anything and Layer Diffusion. Our code and dataset will be released at link https://xiaoyuan1996.github.io.
Abstract:Organic Solar Cells (OSCs) are a promising technology for sustainable energy production. However, the identification of molecules with desired OSC properties typically involves laborious experimental research. To accelerate progress in the field, it is crucial to develop machine learning models capable of accurately predicting the properties of OSC molecules. While graph representation learning has demonstrated success in molecular property prediction, it remains underexplored for OSC-specific tasks. Existing methods fail to capture the unique structural features of OSC molecules, particularly the intricate ring systems that critically influence OSC properties, leading to suboptimal performance. To fill the gap, we present RingFormer, a novel graph transformer framework specially designed to capture both atom and ring level structural patterns in OSC molecules. RingFormer constructs a hierarchical graph that integrates atomic and ring structures and employs a combination of local message passing and global attention mechanisms to generate expressive graph representations for accurate OSC property prediction. We evaluate RingFormer's effectiveness on five curated OSC molecule datasets through extensive experiments. The results demonstrate that RingFormer consistently outperforms existing methods, achieving a 22.77% relative improvement over the nearest competitor on the CEPDB dataset.
Abstract:Solving algebra problems (APs) continues to attract significant research interest as evidenced by the large number of algorithms and theories proposed over the past decade. Despite these important research contributions, however, the body of work remains incomplete in terms of theoretical justification and scope. The current contribution intends to fill the gap by developing a review framework that aims to lay a theoretical base, create an evaluation scheme, and extend the scope of the investigation. This paper first develops the State Transform Theory (STT), which emphasizes that the problem-solving algorithms are structured according to states and transforms unlike the understanding that underlies traditional surveys which merely emphasize the progress of transforms. The STT, thus, lays the theoretical basis for a new framework for reviewing algorithms. This new construct accommodates the relation-centric algorithms for solving both word and diagrammatic algebra problems. The latter not only highlights the necessity of introducing new states but also allows revelation of contributions of individual algorithms obscured in prior reviews without this approach.
Abstract:Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that our work will spark new thoughts in the field of AI-generated text detection, ensuring safe application of LLMs and enhancing compliance. Our code is available at https://github.com/heyongxin233/DeTeCtive.
Abstract:Age-related macular degeneration (AMD) is a major cause of blindness in older adults, severely affecting vision and quality of life. Despite advances in understanding AMD, the molecular factors driving the severity of subretinal scarring (fibrosis) remain elusive, hampering the development of effective therapies. This study introduces a machine learning-based framework to predict key genes that are strongly correlated with lesion severity and to identify potential therapeutic targets to prevent subretinal fibrosis in AMD. Using an original RNA sequencing (RNA-seq) dataset from the diseased retinas of JR5558 mice, we developed a novel and specific feature engineering technique, including pathway-based dimensionality reduction and gene-based feature expansion, to enhance prediction accuracy. Two iterative experiments were conducted by leveraging Ridge and ElasticNet regression models to assess biological relevance and gene impact. The results highlight the biological significance of several key genes and demonstrate the framework's effectiveness in identifying novel therapeutic targets. The key findings provide valuable insights for advancing drug discovery efforts and improving treatment strategies for AMD, with the potential to enhance patient outcomes by targeting the underlying genetic mechanisms of subretinal lesion development.
Abstract:Software vulnerabilities pose significant security challenges and potential risks to society, necessitating extensive efforts in automated vulnerability detection. There are two popular lines of work to address automated vulnerability detection. On one hand, Static Application Security Testing (SAST) is usually utilized to scan source code for security vulnerabilities, especially in industries. On the other hand, deep learning (DL)-based methods, especially since the introduction of large language models (LLMs), have demonstrated their potential in software vulnerability detection. However, there is no comparative study between SAST tools and LLMs, aiming to determine their effectiveness in vulnerability detection, understand the pros and cons of both SAST and LLMs, and explore the potential combination of these two families of approaches. In this paper, we compared 15 diverse SAST tools with 12 popular or state-of-the-art open-source LLMs in detecting software vulnerabilities from repositories of three popular programming languages: Java, C, and Python. The experimental results showed that SAST tools obtain low vulnerability detection rates with relatively low false positives, while LLMs can detect up 90\% to 100\% of vulnerabilities but suffer from high false positives. By further ensembling the SAST tools and LLMs, the drawbacks of both SAST tools and LLMs can be mitigated to some extent. Our analysis sheds light on both the current progress and future directions for software vulnerability detection.
Abstract:We present RodinHD, which can generate high-fidelity 3D avatars from a portrait image. Existing methods fail to capture intricate details such as hairstyles which we tackle in this paper. We first identify an overlooked problem of catastrophic forgetting that arises when fitting triplanes sequentially on many avatars, caused by the MLP decoder sharing scheme. To overcome this issue, we raise a novel data scheduling strategy and a weight consolidation regularization term, which improves the decoder's capability of rendering sharper details. Additionally, we optimize the guiding effect of the portrait image by computing a finer-grained hierarchical representation that captures rich 2D texture cues, and injecting them to the 3D diffusion model at multiple layers via cross-attention. When trained on 46K avatars with a noise schedule optimized for triplanes, the resulting model can generate 3D avatars with notably better details than previous methods and can generalize to in-the-wild portrait input.
Abstract:This paper introduces a pioneering 3D volumetric encoder designed for text-to-3D generation. To scale up the training data for the diffusion model, a lightweight network is developed to efficiently acquire feature volumes from multi-view images. The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net. This research further addresses the challenges of inaccurate object captions and high-dimensional feature volumes. The proposed model, trained on the public Objaverse dataset, demonstrates promising outcomes in producing diverse and recognizable samples from text prompts. Notably, it empowers finer control over object part characteristics through textual cues, fostering model creativity by seamlessly combining multiple concepts within a single object. This research significantly contributes to the progress of 3D generation by introducing an efficient, flexible, and scalable representation methodology. Code is available at https://github.com/tzco/VolumeDiffusion.