Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in tasks requiring reasoning and multi-step problem-solving through the use of chain-of-thought (CoT) prompting. However, generating the full CoT process results in significantly longer output sequences, leading to increased computational costs and latency during inference. To address this challenge, we propose a novel approach to compress the CoT process through semantic alignment, enabling more efficient decoding while preserving the benefits of CoT reasoning. Our method introduces an auxiliary CoT model that learns to generate and compress the full thought process into a compact special token representation semantically aligned with the original CoT output. This compressed representation is then integrated into the input of the Hidden Chain-of-Thought (HCoT) model. The training process follows a two-stage procedure: First, the CoT model is optimized to generate the compressed token representations aligned with the ground-truth CoT outputs using a contrastive loss. Subsequently, with the CoT model parameters frozen, the HCoT model is fine-tuned to generate accurate subsequent predictions conditioned on the prefix instruction and the compressed CoT representations from the CoT model. Extensive experiments across three challenging domains - mathematical reasoning, agent invocation, and question answering - demonstrate that our semantic compression approach achieves competitive or improved performance compared to the full CoT baseline, while providing significant speedups of at least 1.5x in decoding time. Moreover, incorporating contrastive learning objectives further enhances the quality of the compressed representations, leading to better CoT prompting and improved task accuracy. Our work paves the way for more efficient exploitation of multi-step reasoning capabilities in LLMs across a wide range of applications.
Abstract:Cognitive Diagnosis~(CD), which leverages students and exercise data to predict students' proficiency levels on different knowledge concepts, is one of fundamental components in Intelligent Education. Due to the scarcity of student-exercise interaction data, most existing methods focus on making the best use of available data, such as exercise content and student information~(e.g., educational context). Despite the great progress, the abuse of student sensitive information has not been paid enough attention. Due to the important position of CD in Intelligent Education, employing sensitive information when making diagnosis predictions will cause serious social issues. Moreover, data-driven neural networks are easily misled by the shortcut between input data and output prediction, exacerbating this problem. Therefore, it is crucial to eliminate the negative impact of sensitive information in CD models. In response, we argue that sensitive attributes of students can also provide useful information, and only the shortcuts directly related to the sensitive information should be eliminated from the diagnosis process. Thus, we employ causal reasoning and design a novel Path-Specific Causal Reasoning Framework (PSCRF) to achieve this goal. Specifically, we first leverage an encoder to extract features and generate embeddings for general information and sensitive information of students. Then, we design a novel attribute-oriented predictor to decouple the sensitive attributes, in which fairness-related sensitive features will be eliminated and other useful information will be retained. Finally, we designed a multi-factor constraint to ensure the performance of fairness and diagnosis performance simultaneously. Extensive experiments over real-world datasets (e.g., PISA dataset) demonstrate the effectiveness of our proposed PSCRF.
Abstract:Visual localization is one of the most important components for robotics and autonomous driving. Recently, inspiring results have been shown with CNN-based methods which provide a direct formulation to end-to-end regress 6-DoF absolute pose. Additional information like geometric or semantic constraints is generally introduced to improve performance. Especially, the latter can aggregate high-level semantic information into localization task, but it usually requires enormous manual annotations. To this end, we propose a novel auxiliary learning strategy for camera localization by introducing scene-specific high-level semantics from self-supervised representation learning task. Viewed as a powerful proxy task, image colorization task is chosen as complementary task that outputs pixel-wise color version of grayscale photograph without extra annotations. In our work, feature representations from colorization network are embedded into localization network by design to produce discriminative features for pose regression. Meanwhile an attention mechanism is introduced for the benefit of localization performance. Extensive experiments show that our model significantly improve localization accuracy over state-of-the-arts on both indoor and outdoor datasets.
Abstract:Camera localization is a fundamental and key component of autonomous driving vehicles and mobile robots to localize themselves globally for further environment perception, path planning and motion control. Recently end-to-end approaches based on convolutional neural network have been much studied to achieve or even exceed 3D-geometry based traditional methods. In this work, we propose a compact network for absolute camera pose regression. Inspired from those traditional methods, a 3D scene geometry-aware constraint is also introduced by exploiting all available information including motion, depth and image contents. We add this constraint as a regularization term to our proposed network by defining a pixel-level photometric loss and an image-level structural similarity loss. To benchmark our method, different challenging scenes including indoor and outdoor environment are tested with our proposed approach and state-of-the-arts. And the experimental results demonstrate significant performance improvement of our method on both prediction accuracy and convergence efficiency.
Abstract:Convolutional neural networks (CNNs) with dilated filters such as the Wavenet or the Temporal Convolutional Network (TCN) have shown good results in a variety of sequence modelling tasks. However, efficiently modelling long-term dependencies in these sequences is still challenging. Although the receptive field of these models grows exponentially with the number of layers, computing the convolutions over very long sequences of features in each layer is time and memory-intensive, prohibiting the use of longer receptive fields in practice. To increase efficiency, we make use of the "slow feature" hypothesis stating that many features of interest are slowly varying over time. For this, we use a U-Net architecture that computes features at multiple time-scales and adapt it to our auto-regressive scenario by making convolutions causal. We apply our model ("Seq-U-Net") to a variety of tasks including language and audio generation. In comparison to TCN and Wavenet, our network consistently saves memory and computation time, with speed-ups for training and inference of over 4x in the audio generation experiment in particular, while achieving a comparable performance in all tasks.