Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in tasks requiring reasoning and multi-step problem-solving through the use of chain-of-thought (CoT) prompting. However, generating the full CoT process results in significantly longer output sequences, leading to increased computational costs and latency during inference. To address this challenge, we propose a novel approach to compress the CoT process through semantic alignment, enabling more efficient decoding while preserving the benefits of CoT reasoning. Our method introduces an auxiliary CoT model that learns to generate and compress the full thought process into a compact special token representation semantically aligned with the original CoT output. This compressed representation is then integrated into the input of the Hidden Chain-of-Thought (HCoT) model. The training process follows a two-stage procedure: First, the CoT model is optimized to generate the compressed token representations aligned with the ground-truth CoT outputs using a contrastive loss. Subsequently, with the CoT model parameters frozen, the HCoT model is fine-tuned to generate accurate subsequent predictions conditioned on the prefix instruction and the compressed CoT representations from the CoT model. Extensive experiments across three challenging domains - mathematical reasoning, agent invocation, and question answering - demonstrate that our semantic compression approach achieves competitive or improved performance compared to the full CoT baseline, while providing significant speedups of at least 1.5x in decoding time. Moreover, incorporating contrastive learning objectives further enhances the quality of the compressed representations, leading to better CoT prompting and improved task accuracy. Our work paves the way for more efficient exploitation of multi-step reasoning capabilities in LLMs across a wide range of applications.
Abstract:Modern AI models provide the key to a long-standing dream: processing analytical queries about almost any kind of data. Until recently, it was difficult and expensive to extract facts from company documents, data from scientific papers, or insights from image and video corpora. Today's models can accomplish these tasks with high accuracy. However, a programmer who wants to answer a substantive AI-powered query must orchestrate large numbers of models, prompts, and data operations. For even a single query, the programmer has to make a vast number of decisions such as the choice of model, the right inference method, the most cost-effective inference hardware, the ideal prompt design, and so on. The optimal set of decisions can change as the query changes and as the rapidly-evolving technical landscape shifts. In this paper we present Palimpzest, a system that enables anyone to process AI-powered analytical queries simply by defining them in a declarative language. The system uses its cost optimization framework -- which explores the search space of AI models, prompting techniques, and related foundation model optimizations -- to implement the query with the best trade-offs between runtime, financial cost, and output data quality. We describe the workload of AI-powered analytics tasks, the optimization methods that Palimpzest uses, and the prototype system itself. We evaluate Palimpzest on tasks in Legal Discovery, Real Estate Search, and Medical Schema Matching. We show that even our simple prototype offers a range of appealing plans, including one that is 3.3x faster, 2.9x cheaper, and offers better data quality than the baseline method. With parallelism enabled, Palimpzest can produce plans with up to a 90.3x speedup at 9.1x lower cost relative to a single-threaded GPT-4 baseline, while obtaining an F1-score within 83.5% of the baseline. These require no additional work by the user.
Abstract:Large language models (LLMs) are displaying emergent abilities for math reasoning tasks,and there is a growing attention on enhancing the ability of open-source LLMs through supervised fine-tuning (SFT).In this paper, we aim to explore a general data strategy for supervised data to help optimize and expand math reasoning ability.Firstly, we determine the ability boundary of reasoning paths augmentation by identifying these paths' minimal optimal set.Secondly, we validate that different abilities of the model can be cumulatively enhanced by Mix of Minimal Optimal Sets of corresponding types of data, while our models MMOS achieve SOTA performance on series base models under much lower construction costs.Besides, we point out GSM-HARD is not really hard and today's LLMs no longer lack numerical robustness.Also, we provide an Auto Problem Generator for robustness testing and educational applications.Our code and data are publicly available at https://github.com/cyzhh/MMOS.
Abstract:Although large language models demonstrate emergent abilities in solving math word problems, there is a challenging task in complex multi-step mathematical reasoning tasks. To improve model performance on mathematical reasoning tasks, previous work has conducted supervised fine-tuning on open-source models by improving the quality and quantity of data. In this paper, we propose a novel approach, named Brain, to imitate human thought processes to enhance mathematical reasoning abilities, using the Frontal Lobe Model to generate plans, and then employing the Parietal Lobe Model to generate code and execute to obtain answers. First, we achieve SOTA performance in comparison with Code LLaMA 7B based models through this method. Secondly, we find that plans can be explicitly extracted from natural language, code, or formal language. Our code and data are publicly available at https://github.com/cyzhh/Brain.
Abstract:Data curation is a wide-ranging area which contains many critical but time-consuming data processing tasks. However, the diversity of such tasks makes it challenging to develop a general-purpose data curation system. To address this issue, we present Lingua Manga, a user-friendly and versatile system that utilizes pre-trained large language models. Lingua Manga offers automatic optimization for achieving high performance and label efficiency while facilitating flexible and rapid development. Through three example applications with distinct objectives and users of varying levels of technical proficiency, we demonstrate that Lingua Manga can effectively assist both skilled programmers and low-code or even no-code users in addressing data curation challenges.
Abstract:We propose RoTaR, a row-based table representation learning method, to address the efficiency and scalability issues faced by existing table representation learning methods. The key idea of RoTaR is to generate query-agnostic row representations that could be re-used via query-specific aggregation. In addition to the row-based architecture, we introduce several techniques: cell-aware position embedding, teacher-student training paradigm, and selective backward to improve the performance of RoTaR model.
Abstract:Zero-shot NL2SQL is crucial in achieving natural language to SQL that is adaptive to new environments (e.g., new databases, new linguistic phenomena or SQL structures) with zero annotated NL2SQL samples from such environments. Existing approaches either fine-tune pre-trained language models (PLMs) based on annotated data or use prompts to guide fixed large language models (LLMs) such as ChatGPT. PLMs can perform well in schema alignment but struggle to achieve complex reasoning, while LLMs is superior in complex reasoning tasks but cannot achieve precise schema alignment. In this paper, we propose a ZeroNL2SQL framework that combines the complementary advantages of PLMs and LLMs for supporting zero-shot NL2SQL. ZeroNL2SQL first uses PLMs to generate an SQL sketch via schema alignment, then uses LLMs to fill the missing information via complex reasoning. Moreover, in order to better align the generated SQL queries with values in the given database instances, we design a predicate calibration method to guide the LLM in completing the SQL sketches based on the database instances and select the optimal SQL query via an execution-based strategy. Comprehensive experiments show that ZeroNL2SQL can achieve the best zero-shot NL2SQL performance on real-world benchmarks. Specifically, ZeroNL2SQL outperforms the state-of-the-art PLM-based methods by 3.2% to 13% and exceeds LLM-based methods by 10% to 20% on execution accuracy.
Abstract:We introduce a method for improving the structural understanding abilities of language models. Unlike previous approaches that finetune the models with task-specific augmentation, we pretrain language models on a collection of task-agnostic corpora to generate structures from text. Our structure pretraining enables zero-shot transfer of the learned knowledge that models have about the structure tasks. We study the performance of this approach on 28 datasets, spanning 10 structure prediction tasks including open information extraction, joint entity and relation extraction, named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, factual probe, intent detection, and dialogue state tracking. We further enhance the pretraining with the task-specific training sets. We show that a 10B parameter language model transfers non-trivially to most tasks and obtains state-of-the-art performance on 21 of 28 datasets that we evaluate.
Abstract:Synthesizer is a type of electronic musical instrument that is now widely used in modern music production and sound design. Each parameters configuration of a synthesizer produces a unique timbre and can be viewed as a unique instrument. The problem of estimating a set of parameters configuration that best restore a sound timbre is an important yet complicated problem, i.e.: the synthesizer parameters estimation problem. We proposed a multi-modal deep-learning-based pipeline Sound2Synth, together with a network structure Prime-Dilated Convolution (PDC) specially designed to solve this problem. Our method achieved not only SOTA but also the first real-world applicable results on Dexed synthesizer, a popular FM synthesizer.
Abstract:We cast a suite of information extraction tasks into a text-to-triple translation framework. Instead of solving each task relying on task-specific datasets and models, we formalize the task as a translation between task-specific input text and output triples. By taking the task-specific input, we enable a task-agnostic translation by leveraging the latent knowledge that a pre-trained language model has about the task. We further demonstrate that a simple pre-training task of predicting which relational information corresponds to which input text is an effective way to produce task-specific outputs. This enables the zero-shot transfer of our framework to downstream tasks. We study the zero-shot performance of this framework on open information extraction (OIE2016, NYT, WEB, PENN), relation classification (FewRel and TACRED), and factual probe (Google-RE and T-REx). The model transfers non-trivially to most tasks and is often competitive with a fully supervised method without the need for any task-specific training. For instance, we significantly outperform the F1 score of the supervised open information extraction without needing to use its training set.