CEMSE Division, King Abdullah University of Science and Technology
Abstract:Robotics researchers increasingly leverage large language models (LLM) in robotics systems, using them as interfaces to receive task commands, generate task plans, form team coalitions, and allocate tasks among multi-robot and human agents. However, despite their benefits, the growing adoption of LLM in robotics has raised several safety concerns, particularly regarding executing malicious or unsafe natural language prompts. In addition, ensuring that task plans, team formation, and task allocation outputs from LLMs are adequately examined, refined, or rejected is crucial for maintaining system integrity. In this paper, we introduce SafePlan, a multi-component framework that combines formal logic and chain-of-thought reasoners for enhancing the safety of LLM-based robotics systems. Using the components of SafePlan, including Prompt Sanity COT Reasoner and Invariant, Precondition, and Postcondition COT reasoners, we examined the safety of natural language task prompts, task plans, and task allocation outputs generated by LLM-based robotic systems as means of investigating and enhancing system safety profile. Our results show that SafePlan outperforms baseline models by leading to 90.5% reduction in harmful task prompt acceptance while still maintaining reasonable acceptance of safe tasks.
Abstract:This paper presents the concept, design, channel modeling, beamforming algorithm, prototype fabrication, and experimental measurement of an electromagnetically reconfigurable fluid antenna system (ER-FAS), in which each FAS array element features electromagnetic (EM) reconfigurability. Unlike most existing FAS works that investigate spatial reconfigurability, the proposed ER-FAS enables direct control over the EM characteristics of each element, allowing for dynamic radiation pattern reconfigurability. Specifically, a novel ER-FAS architecture leveraging software-controlled fluidics is proposed, and corresponding wireless channel models are established. A low-complexity greedy beamforming algorithm is developed to jointly optimize the analog phase shift and the radiation state of each array element. The accuracy of the ER-FAS channel model and the effectiveness of the beamforming algorithm are validated through (i) full-wave EM simulations and (ii) numerical spectral efficiency evaluations. Simulation results confirm that the proposed ER-FAS significantly enhances spectral efficiency compared to conventional antenna arrays. To further validate this design, we fabricate hardware prototypes for both the ER-FAS element and array, using Galinstan liquid metal alloy, fluid silver paste, and software-controlled fluidic channels. The simulation results are experimentally verified through prototype measurements conducted in an anechoic chamber. Additionally, indoor communication trials are conducted via a pair of software-defined radios which demonstrate superior received power and bit error rate performance of the ER-FAS prototype. This work presents the first demonstration of a liquid-based ER-FAS in array configuration for enhancing communication systems.
Abstract:Reconfigurable intelligent surface (RIS) with 1-bit phase resolution suffers from high side lobe levels (SLLs) in the near field and pronounced quantization lobe levels (QLLs) in the far field, which is detrimental for the quality of wireless communication. RIS design is further challenging in the mm-wave bands, where typically large bandwidths are required. To address these limitations, this work proposes a novel wideband 5G mm-Wave RIS with 2-bit phase quantization, capable of covering the entire 5G n258 band. The proposed unit cell design is a combination of a grounded main slot, a parasitic slot, and a coupling patch, utilizing only two PIN diodes. This design achieves a 2-bit bandwidth (BW) of 24.1--27.7 GHz (13.9\%) and an effective 1-bit BW of 20.0--28.9 GHz (36.4\%). The unit cell features a compact size of 0.39$\lambda$ $\times$ 0.39$\lambda$, providing decent angular stability of $\pm30^\circ$ as well as eliminating the grating lobes. Based on this unit cell design, a 20 $\times$ 20 RIS array has been designed, fabricated, and experimentally characterized. The measured results demonstrate that, within the 5G n258 band, the proposed 2-bit 5G mm-Wave RIS achieves an SLL of -15.4 dB in the near field, representing a 7.6 dB improvement compared to its 1-bit counterpart. Furthermore, it has almost negligible QLL (-14.6 dB) in the far field, providing a suppression of 13.3 dB relative to the 1-bit design. Thus, the proposed 2-bit mm-Wave RIS offers wideband performance, low SLL, negligible QLL, decent angular stability, and a broad beam scanning range of 50$^\circ$, making it a promising solution for high-resolution and low-interference mm-Wave wireless communication systems.
Abstract:Tool-Based Agent Systems (TBAS) allow Language Models (LMs) to use external tools for tasks beyond their standalone capabilities, such as searching websites, booking flights, or making financial transactions. However, these tools greatly increase the risks of prompt injection attacks, where malicious content hijacks the LM agent to leak confidential data or trigger harmful actions. Existing defenses (OpenAI GPTs) require user confirmation before every tool call, placing onerous burdens on users. We introduce Robust TBAS (RTBAS), which automatically detects and executes tool calls that preserve integrity and confidentiality, requiring user confirmation only when these safeguards cannot be ensured. RTBAS adapts Information Flow Control to the unique challenges presented by TBAS. We present two novel dependency screeners, using LM-as-a-judge and attention-based saliency, to overcome these challenges. Experimental results on the AgentDojo Prompt Injection benchmark show RTBAS prevents all targeted attacks with only a 2% loss of task utility when under attack, and further tests confirm its ability to obtain near-oracle performance on detecting both subtle and direct privacy leaks.
Abstract:Recently, large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation, significantly advancing the automation of SE tasks. However, assessing the quality of these LLM-generated code and text remains challenging. The commonly used Pass@k metric necessitates extensive unit tests and configured environments, demands a high labor cost, and is not suitable for evaluating LLM-generated text. Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny. In response, a new trend has emerged to employ LLMs for automated evaluation, known as LLM-as-a-judge. These LLM-as-a-judge methods are claimed to better mimic human assessment than conventional metrics without relying on high-quality reference answers. Nevertheless, their exact human alignment in SE tasks remains unexplored. In this paper, we empirically explore LLM-as-a-judge methods for evaluating SE tasks, focusing on their alignment with human judgments. We select seven LLM-as-a-judge methods that utilize general-purpose LLMs, alongside two LLMs specifically fine-tuned for evaluation. After generating and manually scoring LLM responses on three recent SE datasets of code translation, code generation, and code summarization, we then prompt these methods to evaluate each response. Finally, we compare the scores generated by these methods with human evaluation. The results indicate that output-based methods reach the highest Pearson correlation of 81.32 and 68.51 with human scores in code translation and generation, achieving near-human evaluation, noticeably outperforming ChrF++, one of the best conventional metrics, at 34.23 and 64.92. Such output-based methods prompt LLMs to output judgments directly, and exhibit more balanced score distributions that resemble human score patterns. Finally, we provide...
Abstract:This paper proposes a high-speed transceiver-based method for implementing a digital-to-time converter (DTC). A real-time decoding technique is introduced to inject time information into high-speed pattern data. The stability of the high-speed clock ensures the high precision of the synthesized timing signal without the need for calibration. The reconfigurability of the clock resources provides the DTC with variable resolution and enhanced flexibility for various applications. Based on this approach, a multifunctional DTC is designed to offer both timing sequence and random timing signal functionalities, catering to a wide range of application scenarios. The timing sequence function generates a continuously variable timing signal stream, while the random timing signal function produces random signals with uniformly distributed time intervals. Experimental results, using a Xilinx Kintex-7 FPGA, validate the effectiveness of the proposed methodology. The system achieves a resolution of 100 ps, a dynamic range from 1 ns to 40 {\mu}s, a DNL of -0.02/0.02 LSB, an INL of -0.04/0.03 LSB across the entire range. This approach can be readily adapted to various high-precision timing signal applications.
Abstract:Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data across various sectors. Anomalies in web service data, for example, can signal critical incidents such as system failures or server malfunctions, necessitating timely detection and response. However, most existing TSAD methodologies rely heavily on manual feature engineering or require extensive labeled training data, while also offering limited interpretability. To address these challenges, we introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA), which leverages the power of Large Multimodal Models (LMMs) to enhance both the detection and interpretation of anomalies in time series data. By converting time series into visual formats that LMMs can efficiently process, TAMA leverages few-shot in-context learning capabilities to reduce dependence on extensive labeled datasets. Our methodology is validated through rigorous experimentation on multiple real-world datasets, where TAMA consistently outperforms state-of-the-art methods in TSAD tasks. Additionally, TAMA provides rich, natural language-based semantic analysis, offering deeper insights into the nature of detected anomalies. Furthermore, we contribute one of the first open-source datasets that includes anomaly detection labels, anomaly type labels, and contextual description, facilitating broader exploration and advancement within this critical field. Ultimately, TAMA not only excels in anomaly detection but also provides a comprehensive approach for understanding the underlying causes of anomalies, pushing TSAD forward through innovative methodologies and insights.
Abstract:Recent advances in machine learning and hardware have produced embedded devices capable of performing real-time object detection with commendable accuracy. We consider a scenario in which embedded devices rely on an onboard object detector, but have the option to offload detection to a more powerful edge server when local accuracy is deemed too low. Resource constraints, however, limit the number of images that can be offloaded to the edge. Our goal is to identify which images to offload to maximize overall detection accuracy under those constraints. To that end, the paper introduces a reward metric designed to quantify potential accuracy improvements from offloading individual images, and proposes an efficient approach to make offloading decisions by estimating this reward based only on local detection results. The approach is computationally frugal enough to run on embedded devices, and empirical findings indicate that it outperforms existing alternatives in improving detection accuracy even when the fraction of offloaded images is small.
Abstract:Audio-based disease prediction is emerging as a promising supplement to traditional medical diagnosis methods, facilitating early, convenient, and non-invasive disease detection and prevention. Multimodal fusion, which integrates features from various domains within or across bio-acoustic modalities, has proven effective in enhancing diagnostic performance. However, most existing methods in the field employ unilateral fusion strategies that focus solely on either intra-modal or inter-modal fusion. This approach limits the full exploitation of the complementary nature of diverse acoustic feature domains and bio-acoustic modalities. Additionally, the inadequate and isolated exploration of latent dependencies within modality-specific and modality-shared spaces curtails their capacity to manage the inherent heterogeneity in multimodal data. To fill these gaps, we propose AuD-Former, a hierarchical transformer network designed for general multimodal audio-based disease prediction. Specifically, we seamlessly integrate intra-modal and inter-modal fusion in a hierarchical manner and proficiently encode the necessary intra-modal and inter-modal complementary correlations, respectively. Comprehensive experiments demonstrate that AuD-Former achieves state-of-the-art performance in predicting three diseases: COVID-19, Parkinson's disease, and pathological dysarthria, showcasing its promising potential in a broad context of audio-based disease prediction tasks. Additionally, extensive ablation studies and qualitative analyses highlight the significant benefits of each main component within our model.
Abstract:Multi-human multi-robot teams combine the complementary strengths of humans and robots to tackle complex tasks across diverse applications. However, the inherent heterogeneity of these teams presents significant challenges in initial task allocation (ITA), which involves assigning the most suitable tasks to each team member based on their individual capabilities before task execution. While current learning-based methods have shown promising results, they are often computationally expensive to train, and lack the flexibility to incorporate user preferences in multi-objective optimization and adapt to last-minute changes in real-world dynamic environments. To address these issues, we propose REBEL, an LLM-based ITA framework that integrates rule-based and experience-enhanced learning. By leveraging Retrieval-Augmented Generation, REBEL dynamically retrieves relevant rules and past experiences, enhancing reasoning efficiency. Additionally, REBEL can complement pre-trained RL-based ITA policies, improving situational awareness and overall team performance. Extensive experiments validate the effectiveness of our approach across various settings. More details are available at https://sites.google.com/view/ita-rebel .