Abstract:This paper is the first to present a novel, non-contact method that utilizes orthogonal frequency division multiplexing (OFDM) signals (of frequency 5.23 GHz, emitted by a software defined radio) to radio-expose the pulmonary patients in order to differentiate between five prevalent respiratory diseases, i.e., Asthma, Chronic obstructive pulmonary disease (COPD), Interstitial lung disease (ILD), Pneumonia (PN), and Tuberculosis (TB). The fact that each pulmonary disease leads to a distinct breathing pattern, and thus modulates the OFDM signal in a different way, motivates us to acquire OFDM-Breathe dataset, first of its kind. It consists of 13,920 seconds of raw RF data (at 64 distinct OFDM frequencies) that we have acquired from a total of 116 subjects in a hospital setting (25 healthy control subjects, and 91 pulmonary patients). Among the 91 patients, 25 have Asthma, 25 have COPD, 25 have TB, 5 have ILD, and 11 have PN. We implement a number of machine and deep learning models in order to do lung disease classification using OFDM-Breathe dataset. The vanilla convolutional neural network outperforms all the models with an accuracy of 97%, and stands out in terms of precision, recall, and F1-score. The ablation study reveals that it is sufficient to radio-observe the human chest on seven different microwave frequencies only, in order to make a reliable diagnosis (with 96% accuracy) of the underlying lung disease. This corresponds to a sensing overhead that is merely 10.93% of the allocated bandwidth. This points to the feasibility of 6G integrated sensing and communication (ISAC) systems of future where 89.07% of bandwidth still remains available for information exchange amidst on-demand health sensing. Through 6G ISAC, this work provides a tool for mass screening for respiratory diseases (e.g., COVID-19) at public places.
Abstract:We present for the first time a novel method that utilizes the chest movement-modulated radio signals for non-contact acquisition of the photoplethysmography (PPG) signal. Under the proposed method, a software-defined radio (SDR) exposes the chest of a subject sitting nearby to an orthogonal frequency division multiplexing signal with 64 sub-carriers at a center frequency 5.24 GHz, while another SDR in the close vicinity collects the modulated radio signal reflected off the chest. This way, we construct a custom dataset by collecting 160 minutes of labeled data (both raw radio data as well as the reference PPG signal) from 16 healthy young subjects. With this, we first utilize principal component analysis for dimensionality reduction of the radio data. Next, we denoise the radio signal and reference PPG signal using wavelet technique, followed by segmentation and Z-score normalization. We then synchronize the radio and PPG segments using cross-correlation method. Finally, we proceed to the waveform translation (regression) task, whereby we first convert the radio and PPG segments into frequency domain using discrete cosine transform (DCT), and then learn the non-linear regression between them. Eventually, we reconstruct the synthetic PPG signal by taking inverse DCT of the output of regression block, with a mean absolute error of 8.1294. The synthetic PPG waveform has a great clinical significance as it could be used for non-contact performance assessment of cardiovascular and respiratory systems of patients suffering from infectious diseases, e.g., covid19.
Abstract:This work proposes for the first time to utilize the regular smartphone -- a popular assistive gadget -- to design a novel, non-invasive method for self-monitoring of one's hydration level on a scale of 1 to 4. The proposed method involves recording a small video of a fingertip using the smartphone camera. Subsequently, a photoplethysmography (PPG) signal is extracted from the video data, capturing the fluctuations in peripheral blood volume as a reflection of a person's hydration level changes over time. To train and evaluate the artificial intelligence models, a custom multi-session labeled dataset was constructed by collecting video-PPG data from 25 fasting subjects during the month of Ramadan in 2023. With this, we solve two distinct problems: 1) binary classification (whether a person is hydrated or not), 2) four-class classification (whether a person is fully hydrated, mildly dehydrated, moderately dehydrated, or extremely dehydrated). For both classification problems, we feed the pre-processed and augmented PPG data to a number of machine learning, deep learning and transformer models which models provide a very high accuracy, i.e., in the range of 95% to 99%. We also propose an alternate method where we feed high-dimensional PPG time-series data to a DL model for feature extraction, followed by t-SNE method for feature selection and dimensionality reduction, followed by a number of ML classifiers that do dehydration level classification. Finally, we interpret the decisions by the developed deep learning model under the SHAP-based explainable artificial intelligence framework. The proposed method allows rapid, do-it-yourself, at-home testing of one's hydration level, is cost-effective and thus inline with the sustainable development goals 3 & 10 of the United Nations, and a step-forward to patient-centric healthcare systems, smart homes, and smart cities of future.
Abstract:Optical flow is the pattern of apparent motion of objects in a scene. The computation of optical flow is a critical component in numerous computer vision tasks such as object detection, visual object tracking, and activity recognition. Despite a lot of research, efficiently managing abrupt changes in motion remains a challenge in motion estimation. This paper proposes novel variational regularization methods to address this problem since they allow combining different mathematical concepts into a joint energy minimization framework. In this work, we incorporate concepts from signal sparsity into variational regularization for motion estimation. The proposed regularization uses a robust l1 norm, which promotes sparsity and handles motion discontinuities. By using this regularization, we promote the sparsity of the optical flow gradient. This sparsity helps recover a signal even with just a few measurements. We explore recovering optical flow from a limited set of linear measurements using this regularizer. Our findings show that leveraging the sparsity of the derivatives of optical flow reduces computational complexity and memory needs.
Abstract:We propose two novel purpose-built deep learning (DL) models for synthesis of the arterial blood pressure (ABP) waveform in a cuff-less manner, using a single-site photoplethysmography (PPG) signal. We utilize the public UCI dataset on cuff-less blood pressure (CLBP) estimation to train and evaluate our DL models. Firstly, we implement a transformer model that incorporates positional encoding, multi-head attention, layer normalization, and dropout techniques, and synthesizes the ABP waveform with a mean absolute error (MAE) of 14. Secondly, we implement a frequency-domain (FD) learning approach where we first obtain the discrete cosine transform (DCT) coefficients of the PPG and ABP signals corresponding to two cardiac cycles, and then learn a linear/non-linear (L/NL) regression between them. We learn that the FD L/NL regression model outperforms the transformer model by achieving an MAE of 11.87 and 8.01, for diastolic blood pressure (DBP) and systolic blood pressure (SBP), respectively. Our FD L/NL regression model also fulfills the AAMI criterion of utilizing data from more than 85 subjects, and achieves grade B by the BHS criterion.
Abstract:We present the findings of an experimental study whereby we correlate the changes in the morphology of the photoplethysmography (PPG) signal to healthy aging. Under this pretext, we estimate the biological age of a person as well as the age group he/she belongs to, using the PPG data that we collect via a non-invasive low-cost MAX30102 PPG sensor. Specifically, we collect raw infrared PPG data from the finger-tip of 179 apparently healthy subjects, aged 3-65 years. In addition, we record the following metadata of each subject: age, gender, height, weight, family history of cardiac disease, smoking history, vitals (heart rate and SpO2). We pre-process the raw PPG data to remove noise, artifacts, and baseline wander. We then construct 60 features based upon the first four PPG derivatives, the so-called VPG, APG, JPG, and SPG signals, and the demographic features. We then do correlation-based feature-ranking (which retains 26 most important features), followed by Gaussian noise-based data augmentation (which results in 15-fold increase in the size of our dataset). Finally, we feed the feature set to three machine learning classifiers (logistic regression, decision tree, random forest), and two shallow neural networks: a feedforward neural network (FFNN) and a convolutional neural network (CNN). For the age group classification, the shallow FFNN performs the best with 98% accuracy for binary classification (3-15 years vs. 15+ years), and 97% accuracy for three-class classification (3-12 years, 13-30 years, 30+ years). For biological age prediction, the shallow FFNN again performs the best with a mean absolute error (MAE) of 1.64.
Abstract:This paper reports the findings of an experimental study on the problem of line-of-sight (LOS)/non-line-of-sight (NLOS) classification in an indoor environment. Specifically, we deploy a pair of NI 2901 USRP software-defined radios (SDR) in a large hall. The transmit SDR emits an unmodulated tone of frequency 10 KHz, on a center frequency of 2.4 GHz, using three different signal-to-noise ratios (SNR). The receive SDR constructs a dataset of pathloss measurements from the received signal as it moves across 15 equi-spaced positions on a 1D grid (for both LOS and NLOS scenarios). We utilize our custom dataset to estimate the pathloss parameters (i.e., pathloss exponent) using the least-squares method, and later, utilize the parameterized pathloss model to construct a binary hypothesis test for NLOS identification. Further, noting that the pathloss measurements slightly deviate from Gaussian distribution, we feed our custom dataset to four machine learning (ML) algorithms, i.e., linear support vector machine (SVM) and radial basis function SVM (RBF-SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression (LR). It turns out that the performance of the ML algorithms is only slightly superior to the Neyman-Pearson-based binary hypothesis test (BHT). That is, the RBF-SVM classifier (the best performing ML classifier) and the BHT achieve a maximum accuracy of 88.24% and 87.46% for low SNR, 83.91% and 81.21% for medium SNR, and 87.38% and 86.65% for high SNR.
Abstract:This work leverages deep learning (DL) techniques in order to do automatic and accurate heart murmur detection from phonocardiogram (PCG) recordings. Two public PCG datasets (CirCor Digiscope 2022 dataset and PCG 2016 dataset) from Physionet online database are utilized to train and test three custom neural networks (NN): a 1D convolutional neural network (CNN), a long short-term memory (LSTM) recurrent neural network (RNN), and a convolutional RNN (C-RNN). Under our proposed method, we first do pre-processing on both datasets in order to prepare the data for the NNs. Key pre-processing steps include the following: denoising, segmentation, re-labeling of noise-only segments, data normalization, and time-frequency analysis of the PCG segments using wavelet scattering transform. To evaluate the performance of the three NNs we have implemented, we conduct four experiments, first three using PCG 2022 dataset, and fourth using PCG 2016 dataset. It turns out that our custom 1D-CNN outperforms other two NNs (LSTM- RNN and C-RNN) as well as the state-of-the-art. Specifically, for experiment E1 (murmur detection using original PCG 2022 dataset), our 1D-CNN model achieves an accuracy of 82.28%, weighted accuracy of 83.81%, F1-score of 65.79%, and and area under receive operating charactertic (AUROC) curve of 90.79%. For experiment E2 (mumur detection using PCG 2022 dataset with unknown class removed), our 1D-CNN model achieves an accuracy of 87.05%, F1-score of 87.72%, and AUROC of 94.4%. For experiment E3 (murmur detection using PCG 2022 dataset with re-labeling of segments), our 1D-CNN model achieves an accuracy of 82.86%, weighted accuracy of 86.30%, F1-score of 81.87%, and AUROC of 93.45%. For experiment E4 (abnormal PCG detection using PCG 2016 dataset), our 1D-CNN model achieves an accuracy of 96.30%, F1-score of 96.29% and AUROC of 98.17%.
Abstract:This paper presents a novel method for myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of gray-scale images using Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) operations. Subsequently, the gray-scale images are fed into a custom two-dimensional convolutional neural network (2D-CNN) which efficiently differentiates the ECG beats of the healthy subjects from the ECG beats of the subjects with MI. We train and test the performance of our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from Physionet. Our proposed approach achieves an average classification accuracy of 99.68\%, 99.80\%, 99.82\%, and 99.84\% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Our proposed method is able to cope with additive noise and baseline wander, and does not require handcrafted features by a domain expert. Most importantly, this work opens the floor for innovation in wearable devices (e.g., smart watches, wrist bands etc.) to do accurate, real-time and early MI detection using a single-lead (lead II) ECG.
Abstract:This letter provides a stochastic geometry (SG)-based coverage probability (CP) analysis of an indoor terahertz (THz) downlink assisted by a single reconfigurable intelligent surface (RIS) panel. Specifically, multiple access points (AP) deployed on the ceiling of a hall (each equipped with multiple antennas) need to serve multiple user equipment (UE) nodes. Due to presence of blockages, a typical UE may either get served via a direct link, the RIS, or both links (the composite link). The locations of the APs and blockages are modelled as a Poisson point process (PPP) and SG framework is utilized to compute the CP, at a reference UE for all the three scenarios. Monte-Carlo simulation results validate our theoretical analysis.