Abstract:We present the findings of an experimental study whereby we correlate the changes in the morphology of the photoplethysmography (PPG) signal to healthy aging. Under this pretext, we estimate the biological age of a person as well as the age group he/she belongs to, using the PPG data that we collect via a non-invasive low-cost MAX30102 PPG sensor. Specifically, we collect raw infrared PPG data from the finger-tip of 179 apparently healthy subjects, aged 3-65 years. In addition, we record the following metadata of each subject: age, gender, height, weight, family history of cardiac disease, smoking history, vitals (heart rate and SpO2). We pre-process the raw PPG data to remove noise, artifacts, and baseline wander. We then construct 60 features based upon the first four PPG derivatives, the so-called VPG, APG, JPG, and SPG signals, and the demographic features. We then do correlation-based feature-ranking (which retains 26 most important features), followed by Gaussian noise-based data augmentation (which results in 15-fold increase in the size of our dataset). Finally, we feed the feature set to three machine learning classifiers (logistic regression, decision tree, random forest), and two shallow neural networks: a feedforward neural network (FFNN) and a convolutional neural network (CNN). For the age group classification, the shallow FFNN performs the best with 98% accuracy for binary classification (3-15 years vs. 15+ years), and 97% accuracy for three-class classification (3-12 years, 13-30 years, 30+ years). For biological age prediction, the shallow FFNN again performs the best with a mean absolute error (MAE) of 1.64.
Abstract:Spectral Embedding (SE) has often been used to map data points from non-linear manifolds to linear subspaces for the purpose of classification and clustering. Despite significant advantages, the subspace structure of data in the original space is not preserved in the embedding space. To address this issue subspace clustering has been proposed by replacing the SE graph affinity with a self-expression matrix. It works well if the data lies in a union of linear subspaces however, the performance may degrade in real-world applications where data often spans non-linear manifolds. To address this problem we propose a novel structure-aware deep spectral embedding by combining a spectral embedding loss and a structure preservation loss. To this end, a deep neural network architecture is proposed that simultaneously encodes both types of information and aims to generate structure-aware spectral embedding. The subspace structure of the input data is encoded by using attention-based self-expression learning. The proposed algorithm is evaluated on six publicly available real-world datasets. The results demonstrate the excellent clustering performance of the proposed algorithm compared to the existing state-of-the-art methods. The proposed algorithm has also exhibited better generalization to unseen data points and it is scalable to larger datasets without requiring significant computational resources.