Abstract:Cooperative perception enabled by Vehicle-to-Everything (V2X) communication holds significant promise for enhancing the perception capabilities of autonomous vehicles, allowing them to overcome occlusions and extend their field of view. However, existing research predominantly relies on simulated environments or static datasets, leaving the feasibility and effectiveness of V2X cooperative perception especially for intermediate fusion in real-world scenarios largely unexplored. In this work, we introduce V2X-ReaLO, an open online cooperative perception framework deployed on real vehicles and smart infrastructure that integrates early, late, and intermediate fusion methods within a unified pipeline and provides the first practical demonstration of online intermediate fusion's feasibility and performance under genuine real-world conditions. Additionally, we present an open benchmark dataset specifically designed to assess the performance of online cooperative perception systems. This new dataset extends V2X-Real dataset to dynamic, synchronized ROS bags and provides 25,028 test frames with 6,850 annotated key frames in challenging urban scenarios. By enabling real-time assessments of perception accuracy and communication lantency under dynamic conditions, V2X-ReaLO sets a new benchmark for advancing and optimizing cooperative perception systems in real-world applications. The codes and datasets will be released to further advance the field.
Abstract:This paper introduces and tests a framework integrating traffic regulation compliance into automated driving systems (ADS). The framework enables ADS to follow traffic laws and make informed decisions based on the driving environment. Using RGB camera inputs and a vision-language model (VLM), the system generates descriptive text to support a regulation-aware decision-making process, ensuring legal and safe driving practices. This information is combined with a machine-readable ADS regulation database to guide future driving plans within legal constraints. Key features include: 1) a regulation database supporting ADS decision-making, 2) an automated process using sensor input for regulation-aware path planning, and 3) validation in both simulated and real-world environments. Particularly, the real-world vehicle tests not only assess the framework's performance but also evaluate the potential and challenges of VLMs to solve complex driving problems by integrating detection, reasoning, and planning. This work enhances the legality, safety, and public trust in ADS, representing a significant step forward in the field.
Abstract:Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
Abstract:Rapid advancement of diffusion models has catalyzed remarkable progress in the field of image generation. However, prevalent models such as Flux, SD3.5 and Midjourney, still grapple with issues like model bias, limited text rendering capabilities, and insufficient understanding of Chinese cultural nuances. To address these limitations, we present Seedream 2.0, a native Chinese-English bilingual image generation foundation model that excels across diverse dimensions, which adeptly manages text prompt in both Chinese and English, supporting bilingual image generation and text rendering. We develop a powerful data system that facilitates knowledge integration, and a caption system that balances the accuracy and richness for image description. Particularly, Seedream is integrated with a self-developed bilingual large language model as a text encoder, allowing it to learn native knowledge directly from massive data. This enable it to generate high-fidelity images with accurate cultural nuances and aesthetic expressions described in either Chinese or English. Beside, Glyph-Aligned ByT5 is applied for flexible character-level text rendering, while a Scaled ROPE generalizes well to untrained resolutions. Multi-phase post-training optimizations, including SFT and RLHF iterations, further improve the overall capability. Through extensive experimentation, we demonstrate that Seedream 2.0 achieves state-of-the-art performance across multiple aspects, including prompt-following, aesthetics, text rendering, and structural correctness. Furthermore, Seedream 2.0 has been optimized through multiple RLHF iterations to closely align its output with human preferences, as revealed by its outstanding ELO score. In addition, it can be readily adapted to an instruction-based image editing model, such as SeedEdit, with strong editing capability that balances instruction-following and image consistency.
Abstract:Unit testing is crucial for software development and maintenance. Effective unit testing ensures and improves software quality, but writing unit tests is time-consuming and labor-intensive. Recent studies have proposed deep learning (DL) techniques or large language models (LLMs) to automate unit test generation. These models are usually trained or fine-tuned on large-scale datasets. Despite growing awareness of the importance of data quality, there has been limited research on the quality of datasets used for test generation. To bridge this gap, we systematically examine the impact of noise on the performance of learning-based test generation models. We first apply the open card sorting method to analyze the most popular and largest test generation dataset, Methods2Test, to categorize eight distinct types of noise. Further, we conduct detailed interviews with 17 domain experts to validate and assess the importance, reasonableness, and correctness of the noise taxonomy. Then, we propose CleanTest, an automated noise-cleaning framework designed to improve the quality of test generation datasets. CleanTest comprises three filters: a rule-based syntax filter, a rule-based relevance filter, and a model-based coverage filter. To evaluate its effectiveness, we apply CleanTest on two widely-used test generation datasets, i.e., Methods2Test and Atlas. Our findings indicate that 43.52% and 29.65% of datasets contain noise, highlighting its prevalence. Finally, we conduct comparative experiments using four LLMs (i.e., CodeBERT, AthenaTest, StarCoder, and CodeLlama7B) to assess the impact of noise on test generation performance. The results show that filtering noise positively influences the test generation ability of the models.
Abstract:Traditional sequential recommendation (SR) methods heavily rely on explicit item IDs to capture user preferences over time. This reliance introduces critical limitations in cold-start scenarios and domain transfer tasks, where unseen items and new contexts often lack established ID mappings. To overcome these limitations, recent studies have shifted towards leveraging text-only information for recommendation, thereby improving model generalization and adaptability across domains. Although promising, text-based SR faces unique difficulties: items' text descriptions often share semantic similarities that lead to clustered item representations, compromising their uniformity, a property essential for promoting diversity and enhancing generalization in recommendation systems. In this paper, we explore a novel framework to improve the uniformity of item representations in text-based SR. Our analysis reveals that items within a sequence exhibit marked semantic similarity, meaning they are closer in representation than items overall, and that this effect is more pronounced for less popular items, which form tighter clusters compared to their more popular counterparts. Based on these findings, we propose UniT, a framework that employs three pairwise item sampling strategies: Unified General Sampling Strategy, Sequence-Driven Sampling Strategy, and Popularity-Driven Sampling Strategy. Each strategy applies varying degrees of repulsion to selectively adjust the distances between item pairs, thereby refining representation uniformity while considering both sequence context and item popularity. Extensive experiments on multiple real-world datasets demonstrate that our proposed approach outperforms state-of-the-art models, validating the effectiveness of UniT in enhancing both representation uniformity and recommendation accuracy.The source code is available at https://github.com/ccwwhhh/Model-Rec.
Abstract:Patent analysis highly relies on concise and interpretable document representations, referred to as patent portraits. Keyphrases, both present and absent, are ideal candidates for patent portraits due to their brevity, representativeness, and clarity. In this paper, we introduce KAPPA, an integrated framework designed to construct keyphrase-based patent portraits and enhance patent analysis. KAPPA operates in two phases: patent portrait construction and portrait-based analysis. To ensure effective portrait construction, we propose a semantic-calibrated keyphrase generation paradigm that integrates pre-trained language models with a prompt-based hierarchical decoding strategy to leverage the multi-level structural characteristics of patents. For portrait-based analysis, we develop a comprehensive framework that employs keyphrase-based patent portraits to enable efficient and accurate patent analysis. Extensive experiments on benchmark datasets of keyphrase generation, the proposed model achieves significant improvements compared to state-of-the-art baselines. Further experiments conducted on real-world patent applications demonstrate that our keyphrase-based portraits effectively capture domain-specific knowledge and enrich semantic representation for patent analysis tasks.
Abstract:Recently, large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation, significantly advancing the automation of SE tasks. However, assessing the quality of these LLM-generated code and text remains challenging. The commonly used Pass@k metric necessitates extensive unit tests and configured environments, demands a high labor cost, and is not suitable for evaluating LLM-generated text. Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny. In response, a new trend has emerged to employ LLMs for automated evaluation, known as LLM-as-a-judge. These LLM-as-a-judge methods are claimed to better mimic human assessment than conventional metrics without relying on high-quality reference answers. Nevertheless, their exact human alignment in SE tasks remains unexplored. In this paper, we empirically explore LLM-as-a-judge methods for evaluating SE tasks, focusing on their alignment with human judgments. We select seven LLM-as-a-judge methods that utilize general-purpose LLMs, alongside two LLMs specifically fine-tuned for evaluation. After generating and manually scoring LLM responses on three recent SE datasets of code translation, code generation, and code summarization, we then prompt these methods to evaluate each response. Finally, we compare the scores generated by these methods with human evaluation. The results indicate that output-based methods reach the highest Pearson correlation of 81.32 and 68.51 with human scores in code translation and generation, achieving near-human evaluation, noticeably outperforming ChrF++, one of the best conventional metrics, at 34.23 and 64.92. Such output-based methods prompt LLMs to output judgments directly, and exhibit more balanced score distributions that resemble human score patterns. Finally, we provide...
Abstract:The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
Abstract:Deep learning operators are fundamental components of modern deep learning frameworks. With the growing demand for customized operators, it has become increasingly common for developers to create their own. However, designing and implementing operators is complex and error-prone, due to hardware-specific optimizations and the need for numerical stability. There is a pressing need for tools that can summarize the functionality of both existing and user-defined operators. To address this gap, this work introduces a novel framework for the verified lifting of deep learning operators, which synthesizes high-level mathematical formulas from low-level implementations. Our approach combines symbolic execution, syntax-guided synthesis, and SMT-based verification to produce readable and formally verified mathematical formulas. In synthesis, we employ a combination of top-down and bottom-up strategies to explore the vast search space efficiently; In verification, we design invariant synthesis patterns and leverage SMT solvers to validate the correctness of the derived summaries; In simplification, we use egraph-based techniques with custom rules to restore complex formulas to their natural, intuitive forms. Evaluated on a dataset of deep learning operators implemented in Triton from the real world, our method demonstrates the effectiveness of synthesis and verification compared to existing techniques. This framework bridges the gap between low-level implementations and high-level abstractions, improving understanding and reliability in deep learning operator development.