Abstract:While significant progress has been made in garment transfer, one of the most applicable directions of human-centric image generation, existing works overlook the in-the-wild imagery, presenting severe garment-person misalignment as well as noticeable degradation in fine texture details. This paper, therefore, attends to virtual try-on in real-world scenes and brings essential improvements in authenticity and naturalness especially for loose garment (e.g., skirts, formal dresses), challenging poses (e.g., cross arms, bent legs), and cluttered backgrounds. Specifically, we find that the pixel flow excels at handling loose garments whereas the vertex flow is preferred for hard poses, and by combining their advantages we propose a novel generative network called wFlow that can effectively push up garment transfer to in-the-wild context. Moreover, former approaches require paired images for training. Instead, we cut down the laboriousness by working on a newly constructed large-scale video dataset named Dance50k with self-supervised cross-frame training and an online cycle optimization. The proposed Dance50k can boost real-world virtual dressing by covering a wide variety of garments under dancing poses. Extensive experiments demonstrate the superiority of our wFlow in generating realistic garment transfer results for in-the-wild images without resorting to expensive paired datasets.
Abstract:Generative Adversarial Networks (GANs) have witnessed prevailing success in yielding outstanding images, however, they are burdensome to deploy on resource-constrained devices due to ponderous computational costs and hulking memory usage. Although recent efforts on compressing GANs have acquired remarkable results, they still exist potential model redundancies and can be further compressed. To solve this issue, we propose a novel online multi-granularity distillation (OMGD) scheme to obtain lightweight GANs, which contributes to generating high-fidelity images with low computational demands. We offer the first attempt to popularize single-stage online distillation for GAN-oriented compression, where the progressively promoted teacher generator helps to refine the discriminator-free based student generator. Complementary teacher generators and network layers provide comprehensive and multi-granularity concepts to enhance visual fidelity from diverse dimensions. Experimental results on four benchmark datasets demonstrate that OMGD successes to compress 40x MACs and 82.5X parameters on Pix2Pix and CycleGAN, without loss of image quality. It reveals that OMGD provides a feasible solution for the deployment of real-time image translation on resource-constrained devices. Our code and models are made public at: https://github.com/bytedance/OMGD.
Abstract:Deep learning models in large-scale machine learning systems are often continuously trained with enormous data from production environments. The sheer volume of streaming training data poses a significant challenge to real-time training subsystems and ad-hoc sampling is the standard practice. Our key insight is that these deployed ML systems continuously perform forward passes on data instances during inference, but ad-hoc sampling does not take advantage of this substantial computational effort. Therefore, we propose to record a constant amount of information per instance from these forward passes. The extra information measurably improves the selection of which data instances should participate in forward and backward passes. A novel optimization framework is proposed to analyze this problem and we provide an efficient approximation algorithm under the framework of Mini-batch gradient descent as a practical solution. We also demonstrate the effectiveness of our framework and algorithm on several large-scale classification and regression tasks, when compared with competitive baselines widely used in industry.
Abstract:In this paper, we tackle the problem of human motion transfer, where we synthesize novel motion video for a target person that imitates the movement from a reference video. It is a video-to-video translation task in which the estimated poses are used to bridge two domains. Despite substantial progress on the topic, there exist several problems with the previous methods. First, there is a domain gap between training and testing pose sequences--the model is tested on poses it has not seen during training, such as difficult dancing moves. Furthermore, pose detection errors are inevitable, making the job of the generator harder. Finally, generating realistic pixels from sparse poses is challenging in a single step. To address these challenges, we introduce a novel pose-to-video translation framework for generating high-quality videos that are temporally coherent even for in-the-wild pose sequences unseen during training. We propose a pose augmentation method to minimize the training-test gap, a unified paired and unpaired learning strategy to improve the robustness to detection errors, and two-stage network architecture to achieve superior texture quality. To further boost research on the topic, we build two human motion datasets. Finally, we show the superiority of our approach over the state-of-the-art studies through extensive experiments and evaluations on different datasets.
Abstract:Designing of search space is a critical problem for neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit much smaller than the ones used in recent NAS algorithms. This search space facilitates direct selection of channel numbers and kernel sizes in convolutions. In addition, we propose a resource-aware architecture search algorithm which dynamically selects atomic blocks during training. The algorithm is further accelerated by a dynamic network shrinkage technique. Instead of a search-and-retrain two-stage paradigm, our method can simultaneously search and train the target architecture in an end-to-end manner. Our method achieves state-of-the-art performance under several FLOPS configurations on ImageNet with a negligible searching cost. We open our entire codebase at: https://github.com/meijieru/AtomNAS
Abstract:The recent WSNet [1] is a new model compression method through sampling filterweights from a compact set and has demonstrated to be effective for 1D convolutionneural networks (CNNs). However, the weights sampling strategy of WSNet ishandcrafted and fixed which may severely limit the expression ability of the resultedCNNs and weaken its compression ability. In this work, we present a novel auto-sampling method that is applicable to both 1D and 2D CNNs with significantperformance improvement over WSNet. Specifically, our proposed auto-samplingmethod learns the sampling rules end-to-end instead of being independent of thenetwork architecture design. With such differentiable weight sampling rule learning,the sampling stride and channel selection from the compact set are optimized toachieve better trade-off between model compression rate and performance. Wedemonstrate that at the same compression ratio, our method outperforms WSNetby6.5% on 1D convolution. Moreover, on ImageNet, our method outperformsMobileNetV2 full model by1.47%in classification accuracy with25%FLOPsreduction. With the same backbone architecture as baseline models, our methodeven outperforms some neural architecture search (NAS) based methods such asAMC [2] and MNasNet [3].
Abstract:Deep learning-based methods have achieved remarkable success in image restoration and enhancement, but are they still competitive when there is a lack of paired training data? As one such example, this paper explores the low-light image enhancement problem, where in practice it is extremely challenging to simultaneously take a low-light and a normal-light photo of the same visual scene. We propose a highly effective unsupervised generative adversarial network, dubbed EnlightenGAN, that can be trained without low/normal-light image pairs, yet proves to generalize very well on various real-world test images. Instead of supervising the learning using ground truth data, we propose to regularize the unpaired training using the information extracted from the input itself, and benchmark a series of innovations for the low-light image enhancement problem, including a global-local discriminator structure, a self-regularized perceptual loss fusion, and attention mechanism. Through extensive experiments, our proposed approach outperforms recent methods under a variety of metrics in terms of visual quality and subjective user study. Thanks to the great flexibility brought by unpaired training, EnlightenGAN is demonstrated to be easily adaptable to enhancing real-world images from various domains. The code is available at \url{https://github.com/yueruchen/EnlightenGAN}
Abstract:We present a simple and general method to train a single neural network executable at different widths (number of channels in a layer), permitting instant and adaptive accuracy-efficiency trade-offs at runtime. Instead of training individual networks with different width configurations, we train a shared network with switchable batch normalization. At runtime, the network can adjust its width on the fly according to on-device benchmarks and resource constraints, rather than downloading and offloading different models. Our trained networks, named slimmable neural networks, achieve similar (and in many cases better) ImageNet classification accuracy than individually trained models of MobileNet v1, MobileNet v2, ShuffleNet and ResNet-50 at different widths respectively. We also demonstrate better performance of slimmable models compared with individual ones across a wide range of applications including COCO bounding-box object detection, instance segmentation and person keypoint detection without tuning hyper-parameters. Lastly we visualize and discuss the learned features of slimmable networks. Code and models are available at: https://github.com/JiahuiYu/slimmable_networks
Abstract:Learning long-term spatial-temporal features are critical for many video analysis tasks. However, existing video segmentation methods predominantly rely on static image segmentation techniques, and methods capturing temporal dependency for segmentation have to depend on pretrained optical flow models, leading to suboptimal solutions for the problem. End-to-end sequential learning to explore spatialtemporal features for video segmentation is largely limited by the scale of available video segmentation datasets, i.e., even the largest video segmentation dataset only contains 90 short video clips. To solve this problem, we build a new large-scale video object segmentation dataset called YouTube Video Object Segmentation dataset (YouTube-VOS). Our dataset contains 4,453 YouTube video clips and 94 object categories. This is by far the largest video object segmentation dataset to our knowledge and has been released at http://youtube-vos.org. We further evaluate several existing state-of-the-art video object segmentation algorithms on this dataset which aims to establish baselines for the development of new algorithms in the future.
Abstract:Learning long-term spatial-temporal features are critical for many video analysis tasks. However, existing video segmentation methods predominantly rely on static image segmentation techniques, and methods capturing temporal dependency for segmentation have to depend on pretrained optical flow models, leading to suboptimal solutions for the problem. End-to-end sequential learning to explore spatial-temporal features for video segmentation is largely limited by the scale of available video segmentation datasets, i.e., even the largest video segmentation dataset only contains 90 short video clips. To solve this problem, we build a new large-scale video object segmentation dataset called YouTube Video Object Segmentation dataset (YouTube-VOS). Our dataset contains 3,252 YouTube video clips and 78 categories including common objects and human activities. This is by far the largest video object segmentation dataset to our knowledge and we have released it at https://youtube-vos.org. Based on this dataset, we propose a novel sequence-to-sequence network to fully exploit long-term spatial-temporal information in videos for segmentation. We demonstrate that our method is able to achieve the best results on our YouTube-VOS test set and comparable results on DAVIS 2016 compared to the current state-of-the-art methods. Experiments show that the large scale dataset is indeed a key factor to the success of our model.