Abstract:Accurate power load forecasting is crucial for improving energy efficiency and ensuring power supply quality. Considering the power load forecasting problem involves not only dynamic factors like historical load variations but also static factors such as climate conditions that remain constant over specific periods. From the model-agnostic perspective, this paper proposes a parallel structure network to extract important information from both dynamic and static data. Firstly, based on complexity learning theory, it is demonstrated that models integrated through parallel structures exhibit superior generalization abilities compared to individual base learners. Additionally, the higher the independence between base learners, the stronger the generalization ability of the parallel structure model. This suggests that the structure of machine learning models inherently contains significant information. Building on this theoretical foundation, a parallel convolutional neural network (CNN)-gate recurrent unit (GRU) attention model (PCGA) is employed to address the power load forecasting issue, aiming to effectively integrate the influences of dynamic and static features. The CNN module is responsible for capturing spatial characteristics from static data, while the GRU module captures long-term dependencies in dynamic time series data. The attention layer is designed to focus on key information from the spatial-temporal features extracted by the parallel CNN-GRU. To substantiate the advantages of the parallel structure model in extracting and integrating multi-source information, a series of experiments are conducted.
Abstract:In recent years, multi-view outlier detection (MVOD) methods have advanced significantly, aiming to identify outliers within multi-view datasets. A key point is to better detect class outliers and class-attribute outliers, which only exist in multi-view data. However, existing methods either is not able to reduce the impact of outliers when learning view-consistent information, or struggle in cases with varying neighborhood structures. Moreover, most of them do not apply to partial multi-view data in real-world scenarios. To overcome these drawbacks, we propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD). In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency. Specifically, we propose (1) An outlier-aware contrastive loss with a potential outlier memory bank to eliminate their bias motivated by a theoretical analysis. (2) A neighbor alignment contrastive loss to capture the view-shared local structural correlation. (3) A spreading regularization loss to prevent the model from overfitting over outliers. With the Cross-view Relation Transfer technique, we could easily impute the missing view samples based on the features of neighbors. Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors under different settings.
Abstract:This paper studies generalized inverse reinforcement learning (GIRL) in Markov decision processes (MDPs), that is, the problem of learning the basic components of an MDP given observed behavior (policy) that might not be optimal. These components include not only the reward function and transition probability matrices, but also the action space and state space that are not exactly known but are known to belong to given uncertainty sets. We address two key challenges in GIRL: first, the need to quantify the discrepancy between the observed policy and the underlying optimal policy; second, the difficulty of mathematically characterizing the underlying optimal policy when the basic components of an MDP are unobservable or partially observable. Then, we propose the mathematical formulation for GIRL and develop a fast heuristic algorithm. Numerical results on both finite and infinite state problems show the merit of our formulation and algorithm.
Abstract:We propose a general framework for decoding quantum error-correcting codes with generative modeling. The model utilizes autoregressive neural networks, specifically Transformers, to learn the joint probability of logical operators and syndromes. This training is in an unsupervised way, without the need for labeled training data, and is thus referred to as pre-training. After the pre-training, the model can efficiently compute the likelihood of logical operators for any given syndrome, using maximum likelihood decoding. It can directly generate the most-likely logical operators with computational complexity $\mathcal O(2k)$ in the number of logical qubits $k$, which is significantly better than the conventional maximum likelihood decoding algorithms that require $\mathcal O(4^k)$ computation. Based on the pre-trained model, we further propose refinement to achieve more accurately the likelihood of logical operators for a given syndrome by directly sampling the stabilizer operators. We perform numerical experiments on stabilizer codes with small code distances, using both depolarizing error models and error models with correlated noise. The results show that our approach provides significantly better decoding accuracy than the minimum weight perfect matching and belief-propagation-based algorithms. Our framework is general and can be applied to any error model and quantum codes with different topologies such as surface codes and quantum LDPC codes. Furthermore, it leverages the parallelization capabilities of GPUs, enabling simultaneous decoding of a large number of syndromes. Our approach sheds light on the efficient and accurate decoding of quantum error-correcting codes using generative artificial intelligence and modern computational power.
Abstract:It is very difficult to forecast the production rate of oil wells as the output of a single well is sensitive to various uncertain factors, which implicitly or explicitly show the influence of the static, temporal and spatial properties on the oil well production. In this study, a novel machine learning model is constructed to fuse the static geological information, dynamic well production history, and spatial information of the adjacent water injection wells. There are 3 basic modules in this stacking model, which are regarded as the encoders to extract the features from different types of data. One is Multi-Layer Perceptron, which is to analyze the static geological properties of the reservoir that might influence the well production rate. The other two are both LSTMs, which have the input in the form of two matrices rather than vectors, standing for the temporal and the spatial information of the target well. The difference of the two modules is that in the spatial information processing module we take into consideration the time delay of water flooding response, from the injection well to the target well. In addition, we use Symbolic Transfer Entropy to prove the superiorities of the stacking model from the perspective of Causality Discovery. It is proved theoretically and practically that the presented model can make full use of the model structure to integrate the characteristics of the data and the experts' knowledge into the process of machine learning, greatly improving the accuracy and generalization ability of prediction.
Abstract:We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
Abstract:Deep learning models in large-scale machine learning systems are often continuously trained with enormous data from production environments. The sheer volume of streaming training data poses a significant challenge to real-time training subsystems and ad-hoc sampling is the standard practice. Our key insight is that these deployed ML systems continuously perform forward passes on data instances during inference, but ad-hoc sampling does not take advantage of this substantial computational effort. Therefore, we propose to record a constant amount of information per instance from these forward passes. The extra information measurably improves the selection of which data instances should participate in forward and backward passes. A novel optimization framework is proposed to analyze this problem and we provide an efficient approximation algorithm under the framework of Mini-batch gradient descent as a practical solution. We also demonstrate the effectiveness of our framework and algorithm on several large-scale classification and regression tasks, when compared with competitive baselines widely used in industry.
Abstract:The problem of exploration in unknown environments continues to pose a challenge for reinforcement learning algorithms, as interactions with the environment are usually expensive or limited. The technique of setting subgoals with an intrinsic shaped reward allows for the use of supplemental feedback to aid an agent in environment with sparse and delayed rewards. In fact, it can be an effective tool in directing the exploration behavior of the agent toward useful parts of the state space. In this paper, we consider problems where an agent faces an unknown task in the future and is given prior opportunities to "practice" on related tasks where the interactions are still expensive. We propose a one-step Bayes-optimal algorithm for selecting subgoal designs, along with the number of episodes and the episode length, to efficiently maximize the expected performance of an agent. We demonstrate its excellent performance on a variety of tasks and also prove an asymptotic optimality guarantee.
Abstract:Knowing the reflection of game theory and ethics, we develop a mathematical representation to bridge the gap between the concepts in moral philosophy (e.g., Kantian and Utilitarian) and AI ethics industry technology standard (e.g., IEEE P7000 standard series for Ethical AI). As an application, we demonstrate how human value can be obtained from the experimental game theory (e.g., trust game experiment) so as to build an ethical AI. Moreover, an approach to test the ethics (rightness or wrongness) of a given AI algorithm by using an iterated Prisoner's Dilemma Game experiment is discussed as an example. Compared with existing mathematical frameworks and testing method on AI ethics technology, the advantages of the proposed approach are analyzed.