Abstract:Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.
Abstract:Video localization tasks aim to temporally locate specific instances in videos, including temporal action localization (TAL), sound event detection (SED) and audio-visual event localization (AVEL). Existing methods over-specialize on each task, overlooking the fact that these instances often occur in the same video to form the complete video content. In this work, we present UniAV, a Unified Audio-Visual perception network, to achieve joint learning of TAL, SED and AVEL tasks for the first time. UniAV can leverage diverse data available in task-specific datasets, allowing the model to learn and share mutually beneficial knowledge across tasks and modalities. To tackle the challenges posed by substantial variations in datasets (size/domain/duration) and distinct task characteristics, we propose to uniformly encode visual and audio modalities of all videos to derive generic representations, while also designing task-specific experts to capture unique knowledge for each task. Besides, we develop a unified language-aware classifier by utilizing a pre-trained text encoder, enabling the model to flexibly detect various types of instances and previously unseen ones by simply changing prompts during inference. UniAV outperforms its single-task counterparts by a large margin with fewer parameters, achieving on-par or superior performances compared to state-of-the-art task-specific methods across ActivityNet 1.3, DESED and UnAV-100 benchmarks.
Abstract:Existing audio-visual event localization (AVE) handles manually trimmed videos with only a single instance in each of them. However, this setting is unrealistic as natural videos often contain numerous audio-visual events with different categories. To better adapt to real-life applications, in this paper we focus on the task of dense-localizing audio-visual events, which aims to jointly localize and recognize all audio-visual events occurring in an untrimmed video. The problem is challenging as it requires fine-grained audio-visual scene and context understanding. To tackle this problem, we introduce the first Untrimmed Audio-Visual (UnAV-100) dataset, which contains 10K untrimmed videos with over 30K audio-visual events. Each video has 2.8 audio-visual events on average, and the events are usually related to each other and might co-occur as in real-life scenes. Next, we formulate the task using a new learning-based framework, which is capable of fully integrating audio and visual modalities to localize audio-visual events with various lengths and capture dependencies between them in a single pass. Extensive experiments demonstrate the effectiveness of our method as well as the significance of multi-scale cross-modal perception and dependency modeling for this task.
Abstract:Figure skating scoring is a challenging task because it requires judging players' technical moves as well as coordination with the background music. Prior learning-based work cannot solve it well for two reasons: 1) each move in figure skating changes quickly, hence simply applying traditional frame sampling will lose a lot of valuable information, especially in a 3-5 minutes lasting video, so an extremely long-range representation learning is necessary; 2) prior methods rarely considered the critical audio-visual relationship in their models. Thus, we introduce a multimodal MLP architecture, named Skating-Mixer. It extends the MLP-Mixer-based framework into a multimodal fashion and effectively learns long-term representations through our designed memory recurrent unit (MRU). Aside from the model, we also collected a high-quality audio-visual FS1000 dataset, which contains over 1000 videos on 8 types of programs with 7 different rating metrics, overtaking other datasets in both quantity and diversity. Experiments show the proposed method outperforms SOTAs over all major metrics on the public Fis-V and our FS1000 dataset. In addition, we include an analysis applying our method to recent competitions that occurred in Beijing 2022 Winter Olympic Games, proving our method has strong robustness.