Abstract:Cognitive radio networks (CRNs) have traditionally focused on utilizing idle channels to enhance spectrum efficiency. However, as wireless networks grow denser, channel-centric strategies face increasing limitations. This paper introduces a paradigm shift by exploring the underutilized potential of idle spatial dimensions, termed idle space, in co-channel transmissions. By integrating massive multiple-input multiple-output (MIMO) systems with signal alignment techniques, we enable secondary users to transmit without causing interference to primary users by aligning their signals within the null spaces of primary receivers. We propose a comprehensive framework that synergizes spatial spectrum sensing, signal alignment, and resource allocation, specifically designed for secondary users in CRNs. Theoretical analyses and extensive simulations validate the framework, demonstrating substantial gains in spectrum efficiency, throughput, and interference mitigation. The results show that the proposed approach not only ensures interference-free coexistence with primary users but also unlocks untapped spatial resources for secondary transmissions.
Abstract:The resilience of convolutional neural networks against input variations and adversarial attacks remains a significant challenge in image recognition tasks. Motivated by the need for more robust and reliable image recognition systems, we propose the Dense Cross-Connected Ensemble Convolutional Neural Network (DCC-ECNN). This novel architecture integrates the dense connectivity principle of DenseNet with the ensemble learning strategy, incorporating intermediate cross-connections between different DenseNet paths to facilitate extensive feature sharing and integration. The DCC-ECNN architecture leverages DenseNet's efficient parameter usage and depth while benefiting from the robustness of ensemble learning, ensuring a richer and more resilient feature representation.
Abstract:The training of vision transformer (ViT) networks on small-scale datasets poses a significant challenge. By contrast, convolutional neural networks (CNNs) have an architectural inductive bias enabling them to perform well on such problems. In this paper, we argue that the architectural bias inherent to CNNs can be reinterpreted as an initialization bias within ViT. This insight is significant as it empowers ViTs to perform equally well on small-scale problems while maintaining their flexibility for large-scale applications. Our inspiration for this ``structured'' initialization stems from our empirical observation that random impulse filters can achieve comparable performance to learned filters within CNNs. Our approach achieves state-of-the-art performance for data-efficient ViT learning across numerous benchmarks including CIFAR-10, CIFAR-100, and SVHN.
Abstract:Neural Scene Flow Prior (NSFP) and Fast Neural Scene Flow (FNSF) have shown remarkable adaptability in the context of large out-of-distribution autonomous driving. Despite their success, the underlying reasons for their astonishing generalization capabilities remain unclear. Our research addresses this gap by examining the generalization capabilities of NSFP through the lens of uniform stability, revealing that its performance is inversely proportional to the number of input point clouds. This finding sheds light on NSFP's effectiveness in handling large-scale point cloud scene flow estimation tasks. Motivated by such theoretical insights, we further explore the improvement of scene flow estimation by leveraging historical point clouds across multiple frames, which inherently increases the number of point clouds. Consequently, we propose a simple and effective method for multi-frame point cloud scene flow estimation, along with a theoretical evaluation of its generalization abilities. Our analysis confirms that the proposed method maintains a limited generalization error, suggesting that adding multiple frames to the scene flow optimization process does not detract from its generalizability. Extensive experimental results on large-scale autonomous driving Waymo Open and Argoverse lidar datasets demonstrate that the proposed method achieves state-of-the-art performance.
Abstract:In contrast to current state-of-the-art methods, such as NSFP [25], which employ deep implicit neural functions for modeling scene flow, we present a novel approach that utilizes classical kernel representations. This representation enables our approach to effectively handle dense lidar points while demonstrating exceptional computational efficiency -- compared to recent deep approaches -- achieved through the solution of a linear system. As a runtime optimization-based method, our model exhibits impressive generalizability across various out-of-distribution scenarios, achieving competitive performance on large-scale lidar datasets. We propose a new positional encoding-based kernel that demonstrates state-of-the-art performance in efficient lidar scene flow estimation on large-scale point clouds. An important highlight of our method is its near real-time performance (~150-170 ms) with dense lidar data (~8k-144k points), enabling a variety of practical applications in robotics and autonomous driving scenarios.
Abstract:Training vision transformer networks on small datasets poses challenges. In contrast, convolutional neural networks (CNNs) can achieve state-of-the-art performance by leveraging their architectural inductive bias. In this paper, we investigate whether this inductive bias can be reinterpreted as an initialization bias within a vision transformer network. Our approach is motivated by the finding that random impulse filters can achieve almost comparable performance to learned filters in CNNs. We introduce a novel initialization strategy for transformer networks that can achieve comparable performance to CNNs on small datasets while preserving its architectural flexibility.
Abstract:The test-time optimization of scene flow - using a coordinate network as a neural prior - has gained popularity due to its simplicity, lack of dataset bias, and state-of-the-art performance. We observe, however, that although coordinate networks capture general motions by implicitly regularizing the scene flow predictions to be spatially smooth, the neural prior by itself is unable to identify the underlying multi-body rigid motions present in real-world data. To address this, we show that multi-body rigidity can be achieved without the cumbersome and brittle strategy of constraining the $SE(3)$ parameters of each rigid body as done in previous works. This is achieved by regularizing the scene flow optimization to encourage isometry in flow predictions for rigid bodies. This strategy enables multi-body rigidity in scene flow while maintaining a continuous flow field, hence allowing dense long-term scene flow integration across a sequence of point clouds. We conduct extensive experiments on real-world datasets and demonstrate that our approach outperforms the state-of-the-art in 3D scene flow and long-term point-wise 4D trajectory prediction. The code is available at: \href{https://github.com/kavisha725/MBNSF}{https://github.com/kavisha725/MBNSF}.
Abstract:End-to-end trained per-point embeddings are an essential ingredient of any state-of-the-art 3D point cloud processing such as detection or alignment. Methods like PointNet, or the more recent point cloud transformer -- and its variants -- all employ learned per-point embeddings. Despite impressive performance, such approaches are sensitive to out-of-distribution (OOD) noise and outliers. In this paper, we explore the role of an analytical per-point embedding based on the criterion of bandwidth. The concept of bandwidth enables us to draw connections with an alternate per-point embedding -- positional embedding, particularly random Fourier features. We present compelling robust results across downstream tasks such as point cloud classification and registration with several categories of OOD noise.
Abstract:Neural Scene Flow Prior (NSFP) is of significant interest to the vision community due to its inherent robustness to out-of-distribution (OOD) effects and its ability to deal with dense lidar points. The approach utilizes a coordinate neural network to estimate scene flow at runtime, without any training. However, it is up to 100 times slower than current state-of-the-art learning methods. In other applications such as image, video, and radiance function reconstruction innovations in speeding up the runtime performance of coordinate networks have centered upon architectural changes. In this paper, we demonstrate that scene flow is different -- with the dominant computational bottleneck stemming from the loss function itself (i.e., Chamfer distance). Further, we rediscover the distance transform (DT) as an efficient, correspondence-free loss function that dramatically speeds up the runtime optimization. Our fast neural scene flow (FNSF) approach reports for the first time real-time performance comparable to learning methods, without any training or OOD bias on two of the largest open autonomous driving (AV) lidar datasets Waymo Open and Argoverse.
Abstract:It is well noted that coordinate-based MLPs benefit -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been mainly studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. In addition, we argue that employing a more complex positional encoding -- that scales exponentially with the number of modes -- requires only a linear (rather than deep) coordinate function to achieve comparable performance. Counter-intuitively, we demonstrate that trading positional embedding complexity for network deepness is orders of magnitude faster than current state-of-the-art; despite the additional embedding complexity. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice.