Abstract:This paper challenges the conventional belief that softmax attention in transformers is effective primarily because it generates a probability distribution for attention allocation. Instead, we theoretically show that its success lies in its ability to implicitly regularize the Frobenius norm of the attention matrix during training. We then explore alternative activations that regularize the Frobenius norm of the attention matrix, demonstrating that certain polynomial activations can achieve this effect, making them suitable for attention-based architectures. Empirical results indicate these activations perform comparably or better than softmax across various computer vision and language tasks, suggesting new possibilities for attention mechanisms beyond softmax.
Abstract:In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
Abstract:This paper tackles the simultaneous optimization of pose and Neural Radiance Fields (NeRF). Departing from the conventional practice of using explicit global representations for camera pose, we propose a novel overparameterized representation that models camera poses as learnable rigid warp functions. We establish that modeling the rigid warps must be tightly coupled with constraints and regularization imposed. Specifically, we highlight the critical importance of enforcing invertibility when learning rigid warp functions via neural network and propose the use of an Invertible Neural Network (INN) coupled with a geometry-informed constraint for this purpose. We present results on synthetic and real-world datasets, and demonstrate that our approach outperforms existing baselines in terms of pose estimation and high-fidelity reconstruction due to enhanced optimization convergence.
Abstract:Low-rank decomposition has emerged as a vital tool for enhancing parameter efficiency in neural network architectures, gaining traction across diverse applications in machine learning. These techniques significantly lower the number of parameters, striking a balance between compactness and performance. However, a common challenge has been the compromise between parameter efficiency and the accuracy of the model, where reduced parameters often lead to diminished accuracy compared to their full-rank counterparts. In this work, we propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process. This approach not only preserves the benefits of the parameter efficiency characteristic of low-rank methods but also increases the decomposition's rank, thereby enhancing model accuracy. Our method proves to be an adaptable enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF), and 3D shape modeling. This demonstrates the wide-ranging potential and efficiency of our proposed technique.
Abstract:In the realm of computer vision, Neural Fields have gained prominence as a contemporary tool harnessing neural networks for signal representation. Despite the remarkable progress in adapting these networks to solve a variety of problems, the field still lacks a comprehensive theoretical framework. This article aims to address this gap by delving into the intricate interplay between initialization and activation, providing a foundational basis for the robust optimization of Neural Fields. Our theoretical insights reveal a deep-seated connection among network initialization, architectural choices, and the optimization process, emphasizing the need for a holistic approach when designing cutting-edge Neural Fields.
Abstract:Deep implicit functions have been found to be an effective tool for efficiently encoding all manner of natural signals. Their attractiveness stems from their ability to compactly represent signals with little to no off-line training data. Instead, they leverage the implicit bias of deep networks to decouple hidden redundancies within the signal. In this paper, we explore the hypothesis that additional compression can be achieved by leveraging the redundancies that exist between layers. We propose to use a novel run-time decoder-only hypernetwork - that uses no offline training data - to better model this cross-layer parameter redundancy. Previous applications of hyper-networks with deep implicit functions have applied feed-forward encoder/decoder frameworks that rely on large offline datasets that do not generalize beyond the signals they were trained on. We instead present a strategy for the initialization of run-time deep implicit functions for single-instance signals through a Decoder-Only randomly projected Hypernetwork (D'OH). By directly changing the dimension of a latent code to approximate a target implicit neural architecture, we provide a natural way to vary the memory footprint of neural representations without the costly need for neural architecture search on a space of alternative low-rate structures.
Abstract:Implicit neural representations have emerged as a powerful technique for encoding complex continuous multidimensional signals as neural networks, enabling a wide range of applications in computer vision, robotics, and geometry. While Adam is commonly used for training due to its stochastic proficiency, it entails lengthy training durations. To address this, we explore alternative optimization techniques for accelerated training without sacrificing accuracy. Traditional second-order optimizers like L-BFGS are suboptimal in stochastic settings, making them unsuitable for large-scale data sets. Instead, we propose stochastic training using curvature-aware diagonal preconditioners, showcasing their effectiveness across various signal modalities such as images, shape reconstruction, and Neural Radiance Fields (NeRF).
Abstract:Implicit Neural Representations (INRs) have gained popularity for encoding signals as compact, differentiable entities. While commonly using techniques like Fourier positional encodings or non-traditional activation functions (e.g., Gaussian, sinusoid, or wavelets) to capture high-frequency content, their properties lack exploration within a unified theoretical framework. Addressing this gap, we conduct a comprehensive analysis of these activations from a sampling theory perspective. Our investigation reveals that sinc activations, previously unused in conjunction with INRs, are theoretically optimal for signal encoding. Additionally, we establish a connection between dynamical systems and INRs, leveraging sampling theory to bridge these two paradigms.
Abstract:Recently, neural networks utilizing periodic activation functions have been proven to demonstrate superior performance in vision tasks compared to traditional ReLU-activated networks. However, there is still a limited understanding of the underlying reasons for this improved performance. In this paper, we aim to address this gap by providing a theoretical understanding of periodically activated networks through an analysis of their Neural Tangent Kernel (NTK). We derive bounds on the minimum eigenvalue of their NTK in the finite width setting, using a fairly general network architecture which requires only one wide layer that grows at least linearly with the number of data samples. Our findings indicate that periodically activated networks are \textit{notably more well-behaved}, from the NTK perspective, than ReLU activated networks. Additionally, we give an application to the memorization capacity of such networks and verify our theoretical predictions empirically. Our study offers a deeper understanding of the properties of periodically activated neural networks and their potential in the field of deep learning.
Abstract:Physics-informed neural networks (PINNs) offer a promising avenue for tackling both forward and inverse problems in partial differential equations (PDEs) by incorporating deep learning with fundamental physics principles. Despite their remarkable empirical success, PINNs have garnered a reputation for their notorious training challenges across a spectrum of PDEs. In this work, we delve into the intricacies of PINN optimization from a neural architecture perspective. Leveraging the Neural Tangent Kernel (NTK), our study reveals that Gaussian activations surpass several alternate activations when it comes to effectively training PINNs. Building on insights from numerical linear algebra, we introduce a preconditioned neural architecture, showcasing how such tailored architectures enhance the optimization process. Our theoretical findings are substantiated through rigorous validation against established PDEs within the scientific literature.