Abstract:The semantic segmentation of nighttime scenes is a challenging problem that is key to impactful applications like self-driving cars. Yet, it has received little attention compared to its daytime counterpart. In this paper, we propose NightLab, a novel nighttime segmentation framework that leverages multiple deep learning models imbued with night-aware features to yield State-of-The-Art (SoTA) performance on multiple night segmentation benchmarks. Notably, NightLab contains models at two levels of granularity, i.e. image and regional, and each level is composed of light adaptation and segmentation modules. Given a nighttime image, the image level model provides an initial segmentation estimate while, in parallel, a hardness detection module identifies regions and their surrounding context that need further analysis. A regional level model focuses on these difficult regions to provide a significantly improved segmentation. All the models in NightLab are trained end-to-end using a set of proposed night-aware losses without handcrafted heuristics. Extensive experiments on the NightCity and BDD100K datasets show NightLab achieves SoTA performance compared to concurrent methods.
Abstract:High-resolution representations (HR) are essential for dense prediction tasks such as segmentation, detection, and pose estimation. Learning HR representations is typically ignored in previous Neural Architecture Search (NAS) methods that focus on image classification. This work proposes a novel NAS method, called HR-NAS, which is able to find efficient and accurate networks for different tasks, by effectively encoding multiscale contextual information while maintaining high-resolution representations. In HR-NAS, we renovate the NAS search space as well as its searching strategy. To better encode multiscale image contexts in the search space of HR-NAS, we first carefully design a lightweight transformer, whose computational complexity can be dynamically changed with respect to different objective functions and computation budgets. To maintain high-resolution representations of the learned networks, HR-NAS adopts a multi-branch architecture that provides convolutional encoding of multiple feature resolutions, inspired by HRNet. Last, we proposed an efficient fine-grained search strategy to train HR-NAS, which effectively explores the search space, and finds optimal architectures given various tasks and computation resources. HR-NAS is capable of achieving state-of-the-art trade-offs between performance and FLOPs for three dense prediction tasks and an image classification task, given only small computational budgets. For example, HR-NAS surpasses SqueezeNAS that is specially designed for semantic segmentation while improving efficiency by 45.9%. Code is available at https://github.com/dingmyu/HR-NAS
Abstract:Vision transformers (ViTs) have been successfully applied in image classification tasks recently. In this paper, we show that, unlike convolution neural networks (CNNs)that can be improved by stacking more convolutional layers, the performance of ViTs saturate fast when scaled to be deeper. More specifically, we empirically observe that such scaling difficulty is caused by the attention collapse issue: as the transformer goes deeper, the attention maps gradually become similar and even much the same after certain layers. In other words, the feature maps tend to be identical in the top layers of deep ViT models. This fact demonstrates that in deeper layers of ViTs, the self-attention mechanism fails to learn effective concepts for representation learning and hinders the model from getting expected performance gain. Based on above observation, we propose a simple yet effective method, named Re-attention, to re-generate the attention maps to increase their diversity at different layers with negligible computation and memory cost. The pro-posed method makes it feasible to train deeper ViT models with consistent performance improvements via minor modification to existing ViT models. Notably, when training a deep ViT model with 32 transformer blocks, the Top-1 classification accuracy can be improved by 1.6% on ImageNet. Code is publicly available at https://github.com/zhoudaquan/dvit_repo.
Abstract:Current neural architecture search (NAS) algorithms still require expert knowledge and effort to design a search space for network construction. In this paper, we consider automating the search space design to minimize human interference, which however faces two challenges: the explosive complexity of the exploration space and the expensive computation cost to evaluate the quality of different search spaces. To solve them, we propose a novel differentiable evolutionary framework named AutoSpace, which evolves the search space to an optimal one with following novel techniques: a differentiable fitness scoring function to efficiently evaluate the performance of cells and a reference architecture to speedup the evolution procedure and avoid falling into sub-optimal solutions. The framework is generic and compatible with additional computational constraints, making it feasible to learn specialized search spaces that fit different computational budgets. With the learned search space, the performance of recent NAS algorithms can be improved significantly compared with using previously manually designed spaces. Remarkably, the models generated from the new search space achieve 77.8% top-1 accuracy on ImageNet under the mobile setting (MAdds < 500M), out-performing previous SOTA EfficientNet-B0 by 0.7%. All codes will be made public.
Abstract:Non-Local (NL) blocks have been widely studied in various vision tasks. However, it has been rarely explored to embed the NL blocks in mobile neural networks, mainly due to the following challenges: 1) NL blocks generally have heavy computation cost which makes it difficult to be applied in applications where computational resources are limited, and 2) it is an open problem to discover an optimal configuration to embed NL blocks into mobile neural networks. We propose AutoNL to overcome the above two obstacles. Firstly, we propose a Lightweight Non-Local (LightNL) block by squeezing the transformation operations and incorporating compact features. With the novel design choices, the proposed LightNL block is 400x computationally cheaper} than its conventional counterpart without sacrificing the performance. Secondly, by relaxing the structure of the LightNL block to be differentiable during training, we propose an efficient neural architecture search algorithm to learn an optimal configuration of LightNL blocks in an end-to-end manner. Notably, using only 32 GPU hours, the searched AutoNL model achieves 77.7% top-1 accuracy on ImageNet under a typical mobile setting (350M FLOPs), significantly outperforming previous mobile models including MobileNetV2 (+5.7%), FBNet (+2.8%) and MnasNet (+2.1%). Code and models are available at https://github.com/LiYingwei/AutoNL.
Abstract:Designing of search space is a critical problem for neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit much smaller than the ones used in recent NAS algorithms. This search space facilitates direct selection of channel numbers and kernel sizes in convolutions. In addition, we propose a resource-aware architecture search algorithm which dynamically selects atomic blocks during training. The algorithm is further accelerated by a dynamic network shrinkage technique. Instead of a search-and-retrain two-stage paradigm, our method can simultaneously search and train the target architecture in an end-to-end manner. Our method achieves state-of-the-art performance under several FLOPS configurations on ImageNet with a negligible searching cost. We open our entire codebase at: https://github.com/meijieru/AtomNAS
Abstract:Recently there has been a rising interest in training agents, embodied in virtual environments, to perform language-directed tasks by deep reinforcement learning. In this paper, we propose a simple but effective neural language grounding module for embodied agents that can be trained end to end from scratch taking raw pixels, unstructured linguistic commands, and sparse rewards as the inputs. We model the language grounding process as a language-guided transformation of visual features, where latent sentence embeddings are used as the transformation matrices. In several language-directed navigation tasks that feature challenging partial observability and require simple reasoning, our module significantly outperforms the state of the art. We also release XWorld3D, an easy-to-customize 3D environment that can potentially be modified to evaluate a variety of embodied agents.
Abstract:This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a landmark identification problem, where a set of landmarks specifies the boundaries of the parts. A novel mixture of graphical models is proposed, which dynamically couples the landmarks to a hierarchy of segments. When modeling pairwise relation between landmarks, this coupling enables our model to exploit the local image contents in addition to spatial deformation, an aspect that most existing graphical models ignore. In particular, our model enforces appearance consistency between segments within the same part. Parsing the car, including finding the optimal coupling between landmarks and segments in the hierarchy, is performed by dynamic programming. We evaluate our method on a subset of PASCAL VOC 2010 car images and on the car subset of 3D Object Category dataset (CAR3D). We show good results and, in particular, quantify the effectiveness of using the segment appearance consistency in terms of accuracy of part localization and segmentation.